K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

undefined

Xét tứ giác AFME có

\(\widehat{EAF}=90^0\)

\(\widehat{AEM}=90^0\)

\(\widehat{AFM}=90^0\)

Do đó: AFME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

a) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{AFM}=90^0\)(gt)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC có

M là trung điểm của BC(gt)

MF//AB(cùng vuông góc với AC)

Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(cmt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AE=MF(AFME là hình chữ nhật)

nên \(AE=\dfrac{AB}{2}\)

mà A,E,B thẳng hàng(gt)

nên E là trung điểm của AB

Ta có: F là trung điểm của NM(gt)

nên \(MN=2\cdot MF\)(1)

Ta có: E là trung điểm của AB(cmt)

nên AB=2AE(2)

Ta có: AEMF là hình chữ nhật(cmt)

nên MF=AE(Hai cạnh đối)(3)

Từ (1), (2) và (3) suy ra MN=AB

Xét tứ giác ABMN có 

MN//AB(cùng vuông góc với AC)

MN=AB(cmt)

Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

17 tháng 11 2019

a, tam giác ABC vuông tại C (gt)

=> góc ACB = 90 (đn)

có ME _|_ AC (gt) => góc MEC = 90 (đn)

MF _|_ BC (gt) => góc MFC  = 90 (đn)

xét tứ giác EMFC 

=> EMFC là hình chữ nhật (dấu hiệu)

=> CM = EF (tính chất)

b, M là trung điểm của AB (Gt)

=> CM là trung tuyến (đn/)

tam giác ABC vuông tại C (Gt)

=> CM = AM = AB/2 (đl)

xét tam giác AME và tam giác CME có : EM chung

góc MEA = góc MEC = 90 

=> tam giác AME = tam giác CME (ch-cgv)

=> AE = EC (đn)

E thuộc AC 

=> E là trung điểm của AC (đn)

c, có ME _|_ AC 

=> MD _|_ AC ; xét tứ giác ADCM 

=> ADCM là hình thoi (dấu hiệu)

16 tháng 12 2021

h

 

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét ΔABC có ME//AB

nên CE/CA=CM/CB=1/2

=>E là trung điểm của AC

Xét ΔCAB có MD//AC

nên MD/AC=BD/BA=BM/BC=1/2

=>D là trung điểm của BA

=>MD//CE và MD=CE

=>MCED là hình bình hành

c: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>DE//HM

ΔHAC vuông tại H

mà HE là đường trung tuyến

nên HE=AC/2=MD

Xét tứ giác MHDE có

MH//DE

MD=HE

Do đó;MHDE là hình thang cân

16 tháng 12 2016

A B C M D E H K

11 tháng 2 2017

mk ko biết

19 tháng 11 2016

(Hình bạn tự vẽ nha)

a ,

Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .

b ,

Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB

Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .

-> AC là đường trung trực của MN

->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .

-> Tứ giác MANC là hình thoi.

c ,

Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)

Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .

-> AE = EB (2)

Vì tứ giác MANC là hình thoi nên AF=FC (3)

Từ (1),(2) và (3) suy ra BE = FC (4)

Từ (1) và (4) suy ra : AE + BE = AF + FC

hay AB = AC

-> Tam giác ABC là tam giác vuông cân .

Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .