Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Các anh chị giải hộ em với ak , em cảm ơn nhiều ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây bn nhé:
Ta có a/3 = b/8= c/5. Áp dụng tính chất dãy tỉ số bằng nhau ta có:
2a+3b-c/2.3+3.8-5 = 2a+3b-c/6+24-5 = 50/25 = 2
=> a/3 = 2 => a=6
=> b/8 = 2 => b=16
=> c/5 = 2 => c=10
Nhìn ngắn vậy thôi chứ ko sai đâu bn
Chúc bn học tốt^^
\(\dfrac{a}{3}\) = \(\dfrac{b}{8}\) = \(\dfrac{c}{5}\) và 2a + 3b - c = 50
=> \(\dfrac{2a}{6}\) = \(\dfrac{3b}{24}\) = \(\dfrac{c}{5}\) và 2a + 3b - c = 50
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2a}{6}\) = \(\dfrac{3b}{24}\) = \(\dfrac{c}{5}\) = \(\dfrac{2a+3b-c}{6+24-5}\) = \(\dfrac{50}{25}\) = 2
Vậy:
\(\dfrac{2a}{6}=2\) => \(2a=2.6=12\) => \(a=12:2=6\)
\(\dfrac{3b}{24}=2\) => \(3b=2.24=48\) => \(b=48:3=16\)
\(\dfrac{c}{5}=2\) => \(c=2.5=10\)
\(\dfrac{x}{a}=\dfrac{m-\dfrac{x}{2}}{m}\)
\(\Rightarrow xm=a\left(m-\dfrac{x}{2}\right)\)
\(\Rightarrow xm=am-\dfrac{ax}{2}\)
\(\Rightarrow2xm=2am-ax\)
\(\Rightarrow2xm+ax=2am\)
\(\Rightarrow x\left(2m+a\right)=2am\)
\(\Rightarrow x=\dfrac{2am}{a+2m}\)
Ta có A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}\)
\(=\frac{19}{20}\)
Ta có : B = 1.2 + 2.3 + 3.4 + ...... + 99.100
<=> 3B = 1.2.3 + 0.1.2 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 99.100.101
<=> 3B = 99.100.101
<=> B = \(\frac{99.100.101}{3}=333300\)
a,\(n_{Na}=\dfrac{4,6}{23}=0,2\left(mol\right)\)
PTHH: 2Na + 2H2O → 2NaOH + H2
Mol: 0,2 0,2 0,1
\(V_{H_2}=0,1.22,4=2,24\left(l\right)\)
b,mNaOH=0,2.40=8 (g)
\(C\%_{ddNaOH}=\dfrac{8.100\%}{4,6+200-0,1.2}=3,91\%\)
B = 1.2+2.3 +.......+1000.1001
3B= 1.2.3+2.3.4+3.4.3 +...... + 1000.1001.3
3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... .+ 1000.1001.(1002 - 999)
3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 1000.1001.1002) - (0.1.2 + 1.2.3 + 2.3.4 +.......+999.1000.1001)
3B = 1000.1001.1002 - 0.1.2
3B =1003002000
B = 334334000
B = 1.2+2.3 +.......+1000.1001
3B= 1.2.3+2.3.4+3.4.3 +...... + 1000.1001.3
3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... .+ 1000.1001.(1002 - 999)
3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 1000.1001.1002) - (0.1.2 + 1.2.3 + 2.3.4 +.......+999.1000.1001)
3B = 1000.1001.1002 - 0.1.2
3B =1003002000
B = 334334000
3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n-1)(n+2)]
3A=1.2.3-0.1.2+2.3.4-1.2.3+...n.(n+1)(n+2)-(n-1)n(n+1)
A=n(n+1)(n+2):3