tính giá trị biểu thức 3x^3-2y^3-6x^2y^2+xy taị x=2/3, y=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)B=3x3 -2y3-6x2y2+xy
B=(3x3-6x2y2)+(xy-2y3)
B=3x2(x-2y2)+y(x-2y2)
B=(x-2y2)(3x2+y)
tại x=\(\frac{2}{3}\)và y=\(\frac{1}{2}\)ta có B=(x-2y2)(3x2+y)=(\(\frac{2}{3}\)-2*\(\frac{1}{2}\)^2 )(3*\(\frac{2}{3}\)^2+\(\frac{1}{2}\))=\(\frac{1}{6}\)*\(\frac{11}{6}\)=\(\frac{11}{36}\)
b)C= 2x+xy2-x2y-2y
C=(2x-2y)+(xy2-x2y)
C=2(x-y)-xy(x-y)
C=(2-xy)(x-y)
tại x=\(-\frac{1}{2}\)và y=\(-\frac{1}{3}\)ta có C=(2-xy)(x-y)=(2-\(-\frac{1}{2}\)*\(-\frac{1}{3}\))(\(-\frac{1}{2}\)+\(\frac{1}{3}\))=\(\frac{-11}{36}\)
a )\(2x\left(xy-3\right)+3xy\left(x+1-y\right)+3x\left(y^2-1\right)=2x^2y-6x+3x^2y+3xy-3xy^2+3xy^2-3x=5x^2y-9x+3xy\)
=> Phụ thuộc vào giá trị của biến
b) \(\left(x+2y\right)\left(x-2y\right)-x\left(x+4y^2\right)+5=x^2-4y^2-x^2-4xy^2+5=-4y^2-4xy^2+5\)
=> Phụ thuộc vào giá trị của biến
c) \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)=27x^3+8-9x^2+4=27x^3-9x^2+12\)
=> Phụ thuộc vào giá trị của biến
a: Ta có: \(2x\left(xy-3\right)+3xy\left(x-y+1\right)+3x\left(y^2-1\right)\)
\(=2x^2y-6x+3x^2y-3xy^2+3xy+3xy^2-3x\)
\(=5x^2y+3xy-9x\)
c: Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)\)
\(=27x^3+8-9x^2+4\)
\(=27x^3-9x^2+12\)
a: C=A-B
\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)
\(=x^3+3x^2y+3xy^2+y^3\)
D=A+B
\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)
\(=9x^3-9x^2y+5xy^2+y^3\)
bậc của C là 3
bậc của D là 3
b: Thay x=0 và y=-2 vào D, ta được:
\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)
\(=0-0+0-8=-8\)
c: Thay x=-1 và y=-1 vào C, ta được:
\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)
=-8
+) \(A=x^2-y+xy^2-x\)
\(A=\left(x^2-y\right)+\left(xy^2-x\right)\)
\(A=\left(x^2-y\right)+x\left(y^2-1\right)\)
Tại x = -5, y = 2 ta có :
\(A=\left[\left(-5\right)^2-2\right]+\left(-5\right)\left(2^2-1\right)=8\)
+) \(B=3x^3-2y^3-6x^2y^2\)
\(B=3x^3-\left(2y^3+6x^2y^2\right)=3x^3-2y^2\left(y+3x^2\right)\)
Tại x = 2/3, y = 1/2 ta có :
\(B=3.\left(\dfrac{2}{3}\right)^3-2.\left(\dfrac{1}{2}\right)^2.\left(\dfrac{1}{2}+3.\dfrac{4}{9}\right)=\dfrac{55}{36}\)
+) \(C=2x+xy^2-x^2y-y\)
\(C=\left(2x+xy^2\right)-\left(x^2y+y\right)=x\left(2+y^2\right)-y\left(x^2+1\right)\)
Tại x= -1/2, y = -1/3 ta có :
\(C=\left(\dfrac{-1}{2}\right)\left[2+\left(\dfrac{-1}{3}\right)^2\right]-\left(-\dfrac{1}{3}\right)\left[\left(\dfrac{-1}{2}\right)^2+1\right]=\left(-\dfrac{19}{18}\right)-\left(-\dfrac{5}{12}\right)=\dfrac{-23}{36}\)
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
Ta có: \(3x^3-2y^3-6x^2y^2+xy\)
\(=\left(3x^3-6x^2y^2\right)+\left(xy-2y^3\right)\)
\(=3x^2\left(x-2y^2\right)+y\left(x-2y^2\right)\)
\(=\left(x-2y^2\right)\left(3x^2+y\right)\)
\(=\left(\dfrac{2}{3}-2\cdot\dfrac{1}{4}\right)\cdot\left(3\cdot\dfrac{4}{9}+\dfrac{1}{2}\right)\)
\(=\left(\dfrac{2}{3}-\dfrac{1}{2}\right)\cdot\left(\dfrac{4}{3}+\dfrac{1}{2}\right)\)
\(=\dfrac{1}{6}\cdot\dfrac{11}{6}=\dfrac{11}{36}\)