Viết biểu thức sau dưới dạng lập phương của 1 tổng hoặc hiệu:
a) 4x2 + x4 + 4
b) (-x + 2y)2 + 2(2y - x) + 1
c) (2a - 4b)2 + 4a - 8b + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,-x^3/8 + 3/(4x^2) - 3/(2x) +1`
`=-(x^3/8 - 3/(4x^2) + 3/(2x) - 1)`
`=-(x/2 - 1)^3`
`b,x^6 - 3/(2x^{4} y) + 3/(4x^{2}y^{2}) - 1/(8y^{3})`
`=(x^3 - 1/(2y))^{3}`
này mình có vài câu không làm được, xin lỗi bạn nha
\(b,16x^2-8x+1=\left(4x-1\right)^2\\ c,4x^2+12xy+9y^2=\left(2x+3y\right)^2\\ e,=x^2+2x+1+y^2+2y+1+2\left(x+1\right)\left(y+1\right)\\ =\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\\ =\left[\left(x+1\right)+\left(y+1\right)\right]^2=\left(x+y+2\right)^2\\ g,=x^2-2x\left(y+2\right)+\left(x+2\right)^2=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\\ h,=\left[x+\left(y+1\right)\right]^2=\left(x+y+1\right)^2\)
Bài 3:
b: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)+10=0\)
\(\Leftrightarrow6x^2+12-6x^2+12x-6=0\)
hay \(x=-\dfrac{1}{2}\)
Bài 2:
a: \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b: \(m^3+9m^2n+27mn^2+27n^3=\left(m+3n\right)^3\)
1. a) = 16
b) = 29x^2 + 29 - 29x^2 = 29
2. =x^2-2x+1 + y^2 - 2y + 1 = (x-1)^2 + (y-1)^2
b) = a^2+4a+4 + b^2 + 4b + 4 = (a+2)^2 + (b+2)^2
bạn giải chi tiết cho mình đc k ? pls xin đáy và cảm ơn bạn vô cùng
a) \(x^2+10x+26+y^2+2y\)
\(=x^2+2.x.5+25+y^2+2.y.1+1\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(z^2-6z+5-t^2-4t\)
\(=z^2-2.z.3+9-\left(t^2+2.t.2+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
c) \(x^2-2xy+2y^2+2y+1\)
\(=x^2-2xy+y^2+y^2+2y+1\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
d) \(4x^2-12x-y^2+2y+8\)
\(=\left(2x\right)^2-2.2x.3+9-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
P/s: Mình làm tới đây được thôi vì khúc sau cậu ghi cái đề gì mà chẳng ai hiểu hết. Lần sau ghi rõ để nhiều người giải hơn chứ như này bạn chờ mòn mỏi cũng chẳng ai giải đâu
`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`
`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`
`=(x/2+y-2z)^3`
Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)
\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)
a)\(x^2+2x+1=x^2+2x1+1^2=\left(x+1\right)^2\)
b)\(9x^2+y^2+6xy=3^2x^2+y^2+2.3x.y=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
c)\(25a^2+4b^2-20ab=5^2a^2+2^2b^2-2.5a.2b=\left(5a\right)^2-2.5a.2b+\left(2b\right)^2=\left(5a-2b\right)^2\)
d)\(x^2-x+\frac{1}{4}=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
a) \(x^4+4x^2+4=\left(x^2+2\right)^2\)
b) \(\left(2y-x\right)^2+2\left(2y-x\right)+1=\left(2y-x+1\right)^2\)
c) \(\left(2a-4b\right)^2+4a-8b+1=\left(2a-4b\right)^2+2\cdot\left(2a-4b\right)\cdot1+1^2=\left(2a-4b+1\right)^2\)