CMR: H=\(0,5.\left(2007^{2005}-2003^{2003}\right)\)là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2007^{2005}-2003^{2003}=\left(...7\right)^{4.501}.\left(...7\right)^1-\left(...3\right)^{4.500}.\left(...3\right)^3=\left(...1\right).\left(...7\right)-\left(...1\right).\left(...7\right)\)\(=\left(...7\right)-\left(...7\right)=...0\).
Số này có chữ số tận cùng là 0 nên chia hết cho 2 hay có dạng 2k (k \(\in\) Z)
Do đó \(H=0,5.2k=\frac{1}{2}.2k=\frac{2k}{2}=k\) là số nguyên
H = 0,5 (20072005 - 20032003)
H = (20072005 - 20032003) / 2
20072005 tận cùng là số lẻ
20032003 tận cùng cũng là số lẻ
lẻ trừ lẻ bằng chẵn
Số chẵn sẽ chua hết cho 2
Suy ra H chua hết cho 2
Và H là số nguyên
Phải chứng minh 20072005 - 20032003 có tận cùng là 0
Ta có:
\(2007^{2005}-2003^{2003}=2007^{2004}.2007-2003^{2000}.2003^3\)
\(=\left(2007^4\right)^{501}.2007-\left(2003^4\right)^{500}.\left(...7\right)\)
\(=\left(...1\right)^{501}.2007-\left(...1\right)^{500}.\left(...7\right)\)
\(=\left(...1\right).2007-\left(...1\right).\left(...7\right)\)
\(=\left(...7\right)-\left(...7\right)\)
\(=\left(...0\right)\)
=> 0,5.(20072005 - 20032003) là số nguyên
=> đpcm
2007^2005 là số lẻ
2003^2003 là số lẻ
=>2007^2005-2003^2003 là số chẵn chia hết cho 2
=>0,5(2007^2005-2003^2003)=(2007^2005-2003^2003) /2 là so nguyen dpcm
2007 ; 2003 lẻ => 20072005 và 20032003 lẻ => Hiệu 20072005 - 20032003 chẵn => 20072005 - 20032003 chia hết cho 2
=> (20072005 - 20032003)/2 là số nguyên Hay 0,5. (20072005 - 20032003) là số nguyên
Ta có \(0.5\left(2007^{2005}-2003^{2003}\right)\)= \(\frac{2007^{2005}-2003^{2003}}{2}\)
Vì \(2007^{2005}\)lẻ và \(2003^{2003}\)lẻ
\(\Rightarrow2007^{2005}-2003^{2003}\)chẵn
\(\Rightarrow2007^{2005}-2003^{2003}⋮2\)
\(\Rightarrow0.5\left(2007^{2005}-2003^{2003}\right)\)là số nguyên (đpcm)
Nguyễn Ngọc Quý 'nguyên'<>'tự nhiên'
SỐ NGUYÊN