K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

a=230+22020+4n=415+41010+4n=415(1+4995+4n-15) mà 415 là số cp suy ra (1+4995+4n-15)là số cp

ta có: 1+4995+4n-15=22n-30+2.21989+1=(22n-30+1)2

đề 1+4995+4n-15=(2n-15)2+2.21989+1=(2n-15+1)2 là số cp thì n-15=1989 suy ra n=1974

nếu sai thì sorry bạn nha

17 tháng 7 2021

nko tồn tại

DD
20 tháng 6 2021

\(A=4^{27}+4^{2016}+4^n\)

Với \(n\ge27\)

\(A=4^{27}\left(1+4^{1989}+4^{n-27}\right)\)

\(A\)là số chính phương suy ra \(B=4^{n-27}+4^{1989}+1\)là số chính phương. 

\(B=\left(2^{n-27}\right)^2+2^{3978}+1\)

\(=\left(2^{3977+n-4004}\right)^2+2.2^{3977}+1\)

Với \(n=4004\)thì: 

\(B=\left(2^{3977}\right)^2+2.2^{3977}+1=\left(2^{3977}+1\right)^2\)là số chính phương.

Với \(n>4004\)thì: 

\(B>\left(2^{3977+n-4004}\right)^2\)

\(B< \left(2^{3977+n-4004}\right)^2+2.2^{3977+n-4004}+1\)

\(=\left(2^{3977+n-4004}+1\right)^2\)

Suy ra \(\left(2^{3977+n-4004}\right)^2< B< \left(2^{3977+n-4004}+1\right)^2\)do đó \(B\)không là số chính phương. 

Vậy giá trị lớn nhất của \(n\)là \(4004\).

28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

30 tháng 1 2022

hello

12 tháng 2 2017

số cần tìm là 3

14 tháng 2 2017

3 bạn nhé!