K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2015

Tìm 2 chữ số tận cùng là đi tìm số dư của số đó khi chia  cho 100

+) Tính 320 = (...01)

=> (320)n có tận cùng là 01 

32000 = (320)100 có tận cùng là 01 => 32000 = 100.q + 01  ( Trong đó: q là thương của 32000 chia cho 100)

314 = 4 782 969 

=> 32014 = (100.q + 01). 4 782 969 = 100. p + 4 782 969  ( p = q. 5 782 969)

Số 4 782 969 chia 100 dư 69 => 32014 chia 100 dư 69 => 2 chữ số tận cùng của 32014 là 69

20 tháng 8 2015

+) 220 = (210)2 = 10242 =  1048576

=> (220)n  có tận cùng là 76 ( Vì lũy thừa những số tận cùng là 76 thì có tận cùng là 76)

2014 : 20 = 100 ( dư 14) => 22014 = (220)100. 214 

(220)100 có tận cùng là 76 => 22000 = 100.q + 76 

=> 22014 = (100.q + 76).16 384 = 100.p + 76.16 384 = 100.p + 1 245 184 = (...84)

=> 22014 có tận cùng là 84

13 tháng 7 2023

a, Áp dụng các t/c các số tận cùng là 1 và 6khi tăng bậc số tận cùng vẫn là 6 và 6.
22015=2.22014=2.41007=2.4.41006=8.16503=8.(...6)=(...8)
32014=91007=9.91006=9.81503=9.(...1)=(...9)
=22015 + 32014 =(...8)+(...9)=(...7)
b, 172023≡72023=7.72022=7.491011=7.49.491010=7.49.2401505=(...3)

11 tháng 7 2023

Ta có: \(2^1=..2\)

\(2^2=..4\)

\(2^3=..8\)

\(2^4=..6\)

\(2^5=..2\)

\(2^6=..4\)

\(...\)

Lần lượt như vậy, ta sẽ có:

\(2^{4k+1}=..2\)

\(2^{4k+2}=..4\)

\(2^{4k+3}=..8\)

\(2^{4k}=..6\)

Ta có: \(2015=4.503+3\)

\(=>2015=4k+3\)

\(=>2^{2015}=..8\)

 

Ta lại có: \(3^1=..3\)

\(3^2=..9\)

\(3^3=..7\)

\(3^4=..1\)

\(3^5=..3\)

\(3^6=..9\)

\(...\)

Lần lượt như vậy,ta có quy luật:

\(3^{4k+1}=..3\)

\(3^{4k+2}=..9\)

\(3^{4k+3}=..7\)

\(3^{4k}=..1\)

Ta có: \(2014=4.503+2\)

\(=>2014=4k+2\)

\(=>3^{2014}=..9\)

 

VẬY: \(2^{2015}+3^{2014}=..8+..9=..7\)

=> \(2^{2015}+3^{2014}\) có tận cùng là 7.

 

------------------------------------------------------------

Ta có: \(17^1=..7\)

\(17^2=..9\)

\(17^3=..3\)

\(17^4=..1\)

\(17^5=..7\)

\(17^6=..9\)

Lần lượt như vậy, ta có quy luật:

\(17^{4k+1}=..7\)

\(17^{4k+2}=..9\)

\(17^{4k+3}=..3\)

\(17^{4k}=..1\)

TA CÓ; \(2023=4.505+3\)

\(=>2023=4k+3\)

\(=>17^{2023}=..3\)

Vậy \(17^{2023}\) có tận cùng là 3.

17 tháng 3 2017

chữ số tận cùng là 9

24 tháng 9 2017

Chữ số tạn cùng là số 9 nha bạn!! Thân

26 tháng 3 2016

5^1992=(5^4)^498=625^498=0625^498=(.....0625)

vậy bốn chữ số tận cùng của 5^1992 là 0625

21 tháng 2 2017

ta có:5^8=390625

số có tận cùng là 0625 thì nâng lên bất cứ số nào cũng có tận cùng là 0625

ok 

23 tháng 1 2017

2100=(220)5=(...76)5=(...76)

7^1991=7^1991.7^3=(74)^497.343=(...01)^497.343=(....01).343=....43

5^1992=(5^4)^498=625^498=0625^498=(...0625)

23 tháng 1 2017

Chu so tan cung cua so 2^100 la 4, chu so tan cung cua 7^1991 la 7

Mk làm bằng  mẹo đó nha!

6 tháng 9 2023

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

6 tháng 9 2023

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)