K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

Xét ΔFBH vuông tại F và ΔFCA vuông tại F có

góc FBH=góc FCA

=>ΔFBH đồng dạng vơi ΔFCA

=>FH/FA=BH/AC

=>FH*AC=BH*FA

b: Xét tứ giác BHCK có

I là trung điểm chung của BC và HK

=>BHCK là hình bình hành

=>CK//BH

=>CK vuông góc AC

=>AK là đường kính của (O)

Xet ΔAKC vuông tại C và ΔAHF vuông tại F có

góc AKC=góc AHF(=góc ABD)

=>ΔAKC đồng dạng với ΔAHF

12 tháng 5 2019

a)BICH có hai đường chéo HI, BC cắt nhau tại trung điểm O của mỗi đoạn

=>BICH là hình bình hành

b)BICH là hình bình hành=>BH//CI=>BE//CI(Do B;E;H thẳng hàng)=>CI vuông AC

chứng minh tương tự để được BI vuông AB

c)Xét \(\Delta\)ABE và \(\Delta\)ACF: A chung; BEA=CFA=90 =>\(\Delta\)ABE~\(\Delta\)ACF=>AB.AF=AC.AE

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC và AE*AC=AB*AF

Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc FAE chung

=>ΔAEF đồng dạng với ΔABC

 

Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N...
Đọc tiếp
Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS=NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng Al tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
0
30 tháng 3 2022
Ai giúp em với😢
4 tháng 8 2018

giải cho tôi bài này với

19 tháng 5 2020

Hãy nhớ lại kiến thức lớp 7: Trong 1 tam giác, 3 đường phân giác cắt nhau tại 1 điểm và điểm đó cách đều 3 cạnh của tam giác (điểm này gọi là tâm đường tròn nộ tiếp). Nối E -> F; E -> D ; D -> F. Ta sẽ chứng minh H là giao điểm 3 đường phân giác. 
Ta chứng minh được ∆AFC ~ ∆AEB(g.g)
=> AF/AE = AC/AB
=> AF/AC = AE/AB.
=> ta chứng minh được ∆AEF ~ ∆ABC(c.g.c)
=> góc AEF = góc ABC, chứng minh tương tư ta được ∆CED ~ ∆CBA
=> góc CED = góc ABC
=> góc AEF = góc CED ( = góc ABC), ta có: góc FEB = 90º - góc AEF và góc BED = 90º - góc CED, mà góc AEF = góc CED
=> góc FEB = góc BED
=> BE là phân giác góc FED
=> EH là phân giác góc FED, chứng minh tương tự ta được DH là phân giác góc EDF và FH là phân giác góc EFD