K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Bạn có thể tham khảo tại đây:

https://hoc24.vn/cau-hoi/1-so-tu-nhien-n-la-tong-binh-phuong-cua-3-so-tu-nhien-lien-tiep-chung-minh-rang-n-ko-the-co-17-uoc-so.56414140611

22 tháng 8 2016

Ta thấy 17 là số nguyên tố, vậy để một số tự nhiên x có 17 ước số thì x có dạng \(x=t^{16}=\left(t^8\right)^2\), với t là số nguyên tố. Vậy x phải là số chính phương.

Đặt \(n=\left(x-1\right)^2+x+\left(x+1\right)^2=3x^2+2\). n có dạng 3k + 2.

Vậy n không thể là số chính phương.

Từ đó suy ra n không thể có 17 ước số.

29 tháng 12 2018

Ta thấy 17 là số nguyên tố, vậy để một số tự nhiên x có 17 ước số thì x có dạng \(x=t^{16}=\left(t^8\right)^2\), với t là số nguyên tố. Vậy x phải là số chính phương.

Đặt\( n=\left(x-1\right)^2+x+\left(x+1\right)^2=3x^2+2\). n có dạng 3k + 2.

Vậy n không thể là số chính phương.

Từ đó suy ra n không thể có 17 ước số.

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:

$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$

$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$

Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$

$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.

Ta có đpcm.

19 tháng 4 2016

Gọi 5 số bình phương các số liên tiếp là : a2 ; (a+1)2;(a+2)2;(a+3)2;(a+4)2

Vậy tổng là:

     a2 +  (a+1)2+ (a+2)2 + (a+3)+ (a+4)2= 5a2+1+4+9+16=5a2+30 

19 tháng 4 2016

Gọi 5 số tự nhiên liên tiếp là  n-2;n-1;n;n+1;n+2

Ta có A=(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2

           =5n^2+10=5(n^2+2)

n^2 không tận cùng là 3;8 =>n^2+2 không tận cùng là 0 hoặc 5 =>n^2+2 không chia hết cho 5

=>5(n^2+2) không chia hết cho 25 => A không phải là số chính phương

14 tháng 5 2018

Gọi 4 số đó là a , (a+1) , (a + 2) , (a + 3) 

Do là 4 số tự nhiên liên tiếp nên buộc chúng phải là số chẵn

Đặt \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=t^2\)

Ta có 

\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=4a^2+12a+14=4\left(a^2+3a+3\right)+2\)

Nhận thấy \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2\equiv2\left(mod4\right)\)

Mặt khác , \(t^2\equiv0\left(mod4\right)\)

=> Vô lý 

Vậy tổng bình phương 4 số tự nhiên liên tiếp không là số chính phương 

29 tháng 3 2015

Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2

Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2

=5n2+10=5(n2+2)

n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5

=>5(n2+2) không chia hết cho 25=> A không phải SCP

31 tháng 10 2016

bạn làm đúng rồi đó à

26 tháng 10 2016

tùm lum

trả lời rất dễ

ko thể sai

30 tháng 3 2017

khó quá