K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

tích mình đi

ai tích mình 

mình tích lại 

thanks

12 tháng 11 2016

Do \(x>y>0\) nên \(x+y\ne0.\) Theo tính chất cơ bạn của phân thức ta có :

\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\left(1\right).\)

Mặt khác , do \(x,y>0\) nên \(x^2+2xy+y^2>x^2+y^2\)

Vậy \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\left(2\right)\).Từ \(\left(1\right),\left(2\right)\Leftrightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

6 tháng 4 2015

quy đồng và biến đổi tương đương 

30 tháng 7 2018

1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Do \(x+y=1\)nên \(A=1-2xy\)

Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).

22 tháng 4 2020

\(x+y=1\Rightarrow\hept{\begin{cases}x=1-y\\y=1-x\end{cases}}\)

\(A=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{-1}{y^2+y+1}-\frac{-1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{-x^2-x-1+y^2+y+1}{\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{\left(y-x\right)\left(x+y\right)+\left(y-x\right)}{x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{\left(y-x\right)\left(x+y+1\right)}{x^2y^2+x^2+y^2+xy\left(x+y\right)+xy+\left(x+y\right)+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\) mà x + y = 1

\(A=\frac{2\left(y-x\right)}{x^2y^2+x^2+y^2+2xy+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(A=\frac{2\left(y-x\right)}{x^2y^2+\left(x+y\right)^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\) ; x + y = 1

\(A=\frac{2\left(y-x\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)