K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

help

 

17 tháng 8 2021

d) Tính các góc của hình thang ABCD nếu biết ˆABC−ˆADC=80

 

17 tháng 8 2021

giúp mình giải câu d thôi cũng đc

a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có 

AD=BC(ABCD là hình thang cân)

\(\widehat{ADE}=\widehat{BCF}\)(ABCD là hình thang cân)

Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)

Suy ra: DE=CF(Hai cạnh tương ứng)

b) Xét ΔADB và ΔBCA có 

AD=BC(ABCD là hình thang cân)

AB chung

DB=CA(ABCD là hình thang cân)

Do đó: ΔADB=ΔBCA(c-c-c)

Suy ra: \(\widehat{DBA}=\widehat{CAB}\)(hai góc tương ứng)

hay \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Suy ra: IA=IB

 

c) Ta có: \(\widehat{OAB}=\widehat{ODC}\)(hai góc đồng vị, AB//CD)

\(\widehat{OBA}=\widehat{OCD}\)(hai góc đồng vị, AB//CD)

mà \(\widehat{ODC}=\widehat{OCD}\)(ABCD là hình thang cân)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)(cmt)

nên ΔOAB cân tại O(Định lí đảo của tam giác cân)

Suy ra: OA=OB

Ta có: OA+AD=OD(A nằm giữa O và D)

OB+BC=OC(B nằm giữa O và C)

mà OA=OB(cmt)

và AD=BC(ABCD là hình thang cân)

nên OD=OC

Ta có: IA+IC=AC(I nằm giữa A và C)

IB+ID=BD(I nằm giữa B và D)

mà IA=IB(cmt)

và AC=BD(cmt)

nên IC=ID

Ta có: OA=OB(cmt)

nên O nằm trên đường trung trực của AB(1)

Ta có: IA=IB(cmt)

nên I nằm trên đường trung trực của AB(2)

Ta có: OD=OC(cmt)

nên O nằm trên đường trung trực của DC(3)

Ta có: ID=IC(cmt)

nên I nằm trên đường trung trực của DC(4)

Từ (1) và (2) suy ra OI là đường trung trực của AB

Từ (3) và (4) suy ra OI là đường trung trực của DC

15 tháng 7 2016

a) Xét \(\Delta\)ADE và \(\Delta\)BCF :

AED^ = BFC^ =90o

AD = BC

ADE^ = BCF^ 

=> \(\Delta\)ADE = \(\Delta\)BCF (cạnh huyền_góc nhọn)

=> DE = CF (2 cạnh tương ứng)

b) Xét \(\Delta\)DAB và \(\Delta\)CBA:

AD= BC

DAB^ = CBA^ 

AB chung

=> \(\Delta\)DAB = \(\Delta\)CBA (c.g.c)

=> ADB^ =BCA^ (2 góc tương ứng)

Ta có: ADC^ = ADB^ + BDC^ => BDC^ = ADC^ - ADB^ 

         BCD^ = BCA^ + ACD^ => ACD^ = BCD^ - BCA^ 

mà ADC^ = BCD^ và ADB^ = BCA^ (cmt)

=> BDC^ = ACD^

=> \(\Delta\)DIC cân tại I 

=> ID = IC

Xét \(\Delta\)AID và \(\Delta\)BIC:

AD = BC

ADI^ = BCI^ (cmt)

ID = IC (cmt)

=> \(\Delta\)AID = \(\Delta\)BIC (c.g.c)

=> IA = IB (2 cạnh tương ứng)

c) 

d)

---ko làm nữa đâu--- +.+

26 tháng 8 2021

undefined

22 tháng 6 2023

2)

Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)

\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)

Mà AB // ED (gt)

\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)

=> CA là tia phân giác của góc C.

25 tháng 8 2021

undefined

25 tháng 8 2021

Hình vẽ minh họaundefined

a: Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{IDC}=\widehat{ICD}\)

Xét ΔIDC có \(\widehat{IDC}=\widehat{ICD}\)

nên ΔIDC cân tại I

31 tháng 8 2021

Cảm ơn nhaa <3