Chứng tỏ rằng nếu a và b chia cho m có cùng số dư thì hiệu a-b chia hết cho m .
AI giúp mình với mình sẽ like cho ,huhuhu mai là phải nộp rùi !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
Nếu 3^n +1 là bội của 10 thì 3^n +1 có tận cùng là 0
=> 3n có tận cùng là 9
Mà : 3^n+4 +1 = 3^n . 3^4 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3^n+4 có tận cùng là 0 => 3^n+4 là bội của 10
Vậy 3^n+4 là bội của 10.
Theo đề bài ta có : A chia hết cho 3 và B chia hết cho 6
Để chia hết cho 6 thì số đó phải chia hết cho 2 và 3 ( vì 2 x 3 = 6 )
Suy ra : A là tập hợp con của B ( đpcm )
Bài 1:
Để A chia hết cho 3 thì 48+x chia hết cho 3
hay x chia hết cho 3
Để A không chia hết cho 3 thì x+48 không chia hết cho 3
hay x không chia hết cho 3
Bài 2:
a=24k+10=2(12k+5) chia hết cho 2
a=24k+10=24k+8+2=4(6k+2)+2 không chia hết cho 4
1. Cho tổng A = 12+15+21+x với x \(\in\) \(ℕ\). Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.
- Để A chia hết cho 3 thì x chia hết cho 3.
- Để A không chia hết cho 3 thì x không chia hết cho 3.
2. Khi chia số tự nhiên a cho 24, ta đc số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?
3. Đề thiếu
a chia hết cho 2 vì 24 và 10 đều chia hết cho 2
a không chia hết cho 4 vì 24 chia hết cho 4 nhưng 10 không chia hết cho 4
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n b=m.h+n
=>a‐b=m.k+n‐﴾m.h+n﴿
=m.k+n‐m.h‐n
=﴾m.k‐m.h﴿+﴾n‐n﴿
=m.﴾k‐h﴿ chia hết cho m
=>a‐b chia hết cho m
=>ĐPCM
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n
b=m.h+n
=>a-b=m.k+n-(m.h+n)=m.k+n-m.h-n=(m.k-m.h)+(n-n)=m.(k-h) chia hết cho m
=>a-b chia hết cho m
=>ĐPCM