K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

a) `4\sqrt(2x-1)>8`

`<=>\sqrt(2x-1)>2`

`<=>2x-1>4`

`<=>x>5/2`

b) `2\sqrtx-1>3`

`<=>2\sqrtx>4`

`<=>\sqrtx>2`

`<=>x>4`

a) Ta có: \(4\sqrt{2x-1}>8\)

\(\Leftrightarrow2x-1>4\)

\(\Leftrightarrow2x>5\)

hay \(x>\dfrac{5}{2}\)

b) Ta có: \(2\sqrt{x}-1>3\)

\(\Leftrightarrow\sqrt{x}>2\)

hay x>4

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. ĐKXĐ: $x\geq -9$

PT $\Leftrightarrow x+9=7^2=49$

$\Leftrightarrow x=40$ (tm)

b. ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$

$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$

$\Leftrgihtarrow 3\sqrt{2x+3}=15$

$\Leftrightarrow \sqrt{2x+3}=5$

$\Leftrightarrow 2x+3=25$

$\Leftrightarrow x=11$ (tm)

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

c.

PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2}{3}\)

d. ĐKXĐ: $x\geq 1$

PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)

\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)

\(\Leftrightarrow -1=9\) (vô lý)

Vậy pt vô nghiệm.

 

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

15 tháng 9 2021

\(\sqrt{4\left(x+1\right)}=\sqrt{8}\)

⇒4(x+1)=8

⇒x+1=2

⇒x=1

15 tháng 9 2021

a. \(\sqrt{4\left(x+1\right)}=\sqrt{8}\)                    ĐKXĐ: \(x\ge-1\)

<=> \(\left(\sqrt{4\left(x+1\right)}\right)^2=\left(\sqrt{8}\right)^2\)

<=> 4(x + 1) = 8

<=> 4x + 4 = 8

<=> 4x = -4

<=> x = -1 (TM)

Vậy nghiệm của PT là S = \(\left\{-1\right\}\)

6 tháng 9 2021

\(a,\sqrt{x+1}< 2\Leftrightarrow\left\{{}\begin{matrix}x+1< 4\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x\ge-1\end{matrix}\right.\\ \Leftrightarrow-1\le x< 3\)

\(d,\sqrt{2x+1}\ge3\Leftrightarrow2x+1\ge9\Leftrightarrow x\ge4\)

a: Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)

\(\Leftrightarrow-12x=24\)

hay x=-2

b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)

\(\Leftrightarrow2x=-40\)

hay x=-20

27 tháng 9 2021

Em cảm ơn chị~

`#3107.101107`

`1.`

`a,`

`(2x - 3)^2 = |3 - 2x|`

`=> (2x - 3)^2 = |2x - 3|`

`=>`\(\left[{}\begin{matrix}2x-3=\left(2x-3\right)^2\\2x-3=-\left(2x-3\right)^2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x-3-\left(2x-3\right)^2=0\\2x-3+\left(2x-3\right)^2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}\left(2x-3\right)\left(1-2x+3\right)=0\\\left(2x-3\right)\left(1+2x-3\right)=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x-3=0\\4-2x=0\\2x-2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)

Vậy, `x \in {3/2; 2; 1}`

`b,`

`(x - 1)^2 + (2x - 1)^2 = 0`

`=>`\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy, `x \in {1; 1/2}`

`c,`

`5 - x^2 = 1`

`=> x^2 = 4`

`=> x^2 = (+-2)^2`

`=> x = +-2`

Vậy, `x \in {-2; 2}`

`d,`

`x - 2\sqrt{x} = 0`

`=> x^2 - (2\sqrt{x})^2 = 0`

`=> x^2 - 4x = 0`

`=> x(x - 4) = 0`

`=>`\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy, `x \in {0; 4}`

`g,`

`(x - 1) + 1/7 = 0`

`=> x - 1 + 1/7 = 0`

`=> x - 6/7 = 0`

`=> x = 6/7`

Vậy, `x = 6/7.`

2 tháng 10 2021

a) \(\sqrt{\left(2x-3\right)^2}=7\)

\(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b) \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\left(đk:x\ge-2\right)\)

\(\Leftrightarrow8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}=20\)

\(\Leftrightarrow5\sqrt{x+2}=20\)

\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)

c) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

2 tháng 10 2021

a. \(\sqrt{\left(2x-3\right)^2}=7\)

<=> \(\left|2x-3\right|=7\)

<=> \(\left[{}\begin{matrix}2x-3=7\left(x\ge\dfrac{3}{2}\right)\\-2x+3=7\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2x=10\\-2x=4\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\)  ĐK: \(x\ge-2\)

<=> \(\sqrt{64\left(x+2\right)}-\sqrt{25\left(x+2\right)}+\sqrt{4\left(x+2\right)}-20=0\)

<=> \(8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}-20=0\)

<=> \(\sqrt{x+2}.\left(8-5+2\right)-20=0\)

<=> \(5\sqrt{x+2}=20\)

<=> \(\sqrt{x+2}=4\)

<=> \(\left(\sqrt{x+2}\right)^2=4^2\)

<=> \(\left|x+2\right|=16\)

<=> \(\left[{}\begin{matrix}x+2=16\left(x\ge-2\right)\\x+2=-16\left(x< -2\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=14\left(TM\right)\\x=-18\left(TM\right)\end{matrix}\right.\)

c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)             ĐK: \(x\ge3\)

<=> \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

<=> \(\sqrt{x-3}.\sqrt{x+3}-3\sqrt{x-3}=0\)

<=> \(\left(\sqrt{x+3}-3\right).\sqrt{x-3}=0\)

<=> \(\left[{}\begin{matrix}\sqrt{x+3}-3=0\\\sqrt{x-3}=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=6\\x=3\end{matrix}\right.\)

25 tháng 6 2021

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-1\\x>1\end{matrix}\right.\)\(\Rightarrow x>1\)

Ta có : \(PT\Leftrightarrow\sqrt{x+1}=2\sqrt{x-1}\)

\(\Leftrightarrow x+1=4x-4\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\left(TM\right)\)

Vậy ...

b, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge1\\x>-1\end{matrix}\right.\)\(\Rightarrow x\ge1\)

Ta có : \(PT\Leftrightarrow\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow x-1=4x+4\)

\(\Leftrightarrow3x=-5\)

\(\Leftrightarrow x=-\dfrac{5}{3}\left(L\right)\)

Vậy phương trình vô nghiệm .

a) ĐKXĐ: \(x>1\)

Ta có: \(\dfrac{\sqrt{x+1}}{\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x+1}=2\sqrt{x-1}\)

\(\Leftrightarrow x+1=4x-4\)

\(\Leftrightarrow x-4x=-4-1\)

\(\Leftrightarrow-3x=-5\)

hay \(x=\dfrac{5}{3}\left(nhận\right)\)

Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}x>-1\\x\ne1\end{matrix}\right.\)

Ta có: \(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}=2\)

\(\Leftrightarrow\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow x-1=4x+4\)

\(\Leftrightarrow x-4x=4+1\)

\(\Leftrightarrow-3x=5\)

hay \(x=-\dfrac{5}{3}\)(loại)

Vậy: \(S=\varnothing\)