Tính nhanh :
a) \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)......\left(1-\frac{1}{64}\right)\)\(=\frac{9}{16}\)đúng không
b) \(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)......\left(1+\frac{1}{39.41}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
=\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{8.10}\right)\)
=\(\frac{4}{3}.\frac{9}{8}....\frac{81}{80}\)
=\(\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{9.9}{8.10}\)
=\(\frac{2.3....9}{1.2....8}.\frac{2.3....9}{3.4....10}\)
=\(9.\frac{2}{10}\)
=\(\frac{9}{5}\)
= 4/1.3 x 9/2.4 x 16/3.5 x...x 10000/99.101
= 2.2/1.3 x 3.3/2.4 x 4.4/3.5 x..x 100.100/99.101
= (2.3.4. ... 100/1.2.3. .... 99) x (2.3.4. ... .100/3.4.5. ... .101)
= 100.2/101
=200/101
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(\Rightarrow A=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)
\(\Rightarrow A=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{10000}{99.101}\)
\(\Rightarrow A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)
\(\Rightarrow A=\frac{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}{\left(1.2.3.....99\right)\left(3.4.5.....101\right)}\)
\(\Rightarrow A=\frac{100.2}{101}=\frac{200}{101}\)
\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{81}-1\right)\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}....\frac{-80}{81}.\frac{-99}{100}\)
\(=\left[\left(-1\right).\left(-1\right)...\left(-1\right)\left(9\text{số (-1)}\right)\right].\frac{3}{4}.\frac{8}{9}....\frac{99}{100}\)
\(=\left(-1\right).\frac{1.3}{2.2}.\frac{2.4}{3.3}....\frac{9.11}{10.10}\)
\(=-\frac{1.11}{2.10}=-\frac{11}{10}\)
a, Đúng rồi đó
b, \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)+....+\left(1+\frac{1}{39.41}\right)\)
= \(\frac{4}{1.3}.\frac{9}{2.4}.....\frac{1600}{39.41}\)
= \(\frac{2.2.3.3....40.40}{1.3.2.4....39.41}\)
= \(\frac{\left(2.3....40\right)\left(2.3....40\right)}{\left(1.2....39\right)\left(3.4....41\right)}\)
= \(\frac{40.2}{41}\)
= \(\frac{80}{41}\)
\(\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{8^2}\right)\)
\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{8^2-1}{8^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.....\frac{7.9}{8.8}\)
\(=\frac{\left(1.2.....7\right).\left(3.4.....9\right)}{\left(2.3.....8\right).\left(2.3.....8\right)}\)
\(=\frac{1.9}{8.2}=\frac{9}{16}\)