Giả xử x = \(\frac{a}{m};y=\frac{b}{m}\left(a,b,m\in Z,m>0\right)\) và x < y. Hãy chứng minh
Nếu chọn z = \(\frac{a+b}{2m}\) thì x < z < y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m>0 và x<y nên a<b Do đó \(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}
C1:
Ta có: \(x=\frac{a}{m}=\frac{2a}{2m}\) và \(y=\frac{b}{m}=\frac{2b}{2m}\)
Vì x<y nên a<b
Vì 2a< a+b< 2b
=> \(\frac{2a}{2m}
do x<y =>a/m<b/m=>a<b
ta có:
x=a/m=2a/2m
y=b/m=2b/2m
do a<b=>a+a/2m<a+b/2m
<=>2a/2m<a+b/2m
<=>x<z (1)
do a<b=>a+b/2m<b+b/2m
<=>a+b/2m<2b/2m
<=>z<y (2)
từ (1) và (2)=>ĐPCM
x =a/m =>. x = 2a/2m
y =b/m => y = 2b/2m
z = (a+b)/2m
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1)
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2)
Suy ra:
2a < a +b < 2b
Suy ra (chia 2 vế cho 2m) :
2a/2m < (a +b)/2m < 2b
R út gọn ta được : x < z <y
Vì x<y nên :
# \(\frac{a}{m}< \frac{b}{m}\) #\(\frac{a}{m}< \frac{b}{m}\)
\(\frac{a}{m}+\frac{a}{m}< \frac{b}{m}+\frac{a}{m}\) \(\frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)
\(\frac{2a}{m}< \frac{a+b}{m}\) \(\frac{a+b}{m}< \frac{2b}{m}\)
\(\frac{2a}{2m}< \frac{a+b}{2m}\) \(\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\frac{a}{m}< \frac{a+b}{2m}\) \(\frac{a+b}{2m}< \frac{b}{m}\)
=> x < z ( 1 ) => z < y ( 2)
TỪ (1) VÀ (2) TA SUY RA X < Z < Y
( Nếu có chỗ nào bạn ko hỉu thì ib cho mik nha mk sẽ chỉ bn ha ) ( ý mà nhớ là ..... ( ai cx muốn hì....hì...) )
x=a/m; y=b/m; x<y suy ra a/m<b/m suy ra a<b
suy ra a+a<a+b suy ra 2a<a+b suy ra 2a/m<a+b/m suy ra 2a/2m<a+b/2m
Hay x<z
Tương tự ta có z<y
Nên x<z<y
Ta có:
x = \(\frac{a}{m}\)\(\Rightarrow\)x = \(\frac{2a}{2m}\Rightarrow\)x = \(\frac{a+a}{2m}\)
y = \(\frac{b}{m}\Rightarrow\)y = \(\frac{2b}{2m}\Rightarrow\)y = \(\frac{b+b}{2m}\)
Mà x < y \(\Rightarrow\) a < b \(\Rightarrow\)a + a < b + b
Vì a + a < b + b \(\Rightarrow\)\(\frac{a+a}{2m}\) < \(\frac{a+b}{2m}\) < \(\frac{b+b}{2m}\Rightarrow\)\(\frac{a}{m}\)< \(\frac{a+b}{m}\) < \(\frac{b}{m}\)
Vậy x < z < y