Chứng minh rằng (ab+cd+eg) chia hết cho 11 thì abcdeg cũng chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:
=>ab+cd+eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
=> (b+d+g) - (a+c+e) chia hết cho 11
=> đpcm
ab+cd+eg=10a+b+10c+d+10e+g
=11(a+c+e)-(b+d+g)+(a+c+e)
mà 1 chia hết cho 11=>10a+b+10c+d+10e+g chia hết cho 11
vậy ab+cd+eg chia hết cho 11 => abcdeg chia hết cho 11
nếu ab+cd+eg chia hết cho 11 ta sẽ có như sau:
abcdeg=ab.10000+cd.100+eg.1 Ta lại có như sau
ab.10000+100.cd+eg.1 - ab+cd+eg =ab.9999+cd.99 mà 9999chia hết cho 11 và 99 chia hết cho 11 nên khi ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11 .
đúng ko . đúng xin một lời nói đúng vào trang của mình
a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11
b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11
abcdeg = ab . 10000 + cd .100+ eg
= ab . 9999 + 1 . ab + cd . 99 + cd + eg
= ab . 11 . 909 + cd . 11 .9 + (ab + cd + eg)
= 11 . (ab + 909 + cd . 9 ) + (ab + cd + eg)
Vì 11 . (ab . 909 + cd . 9) chia hết cho 11
ab + cd + eg chia hết cho 11
nên abcdeg chia hết cho 11
Vậy nếu ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11
Lời giải:
$\overline{abcdeg}=\overline{ab}\times 10000+\overline{cd}\times 100+\overline{eg}$
$=(\overline{ab}+\overline{cd}+\overline{eg})+9999\overline{ab}+99\overline{cd}$
$=(\overline{ab}+\overline{cd}+\overline{eg})+11(909\overline{ab}+9\overline{cd})\vdots 11$ do:
$(\overline{ab}+\overline{cd}+\overline{eg})\vdots 11$ và $11(909\overline{ab}+9\overline{cd})\vdots 11$
TK :
Theo tính chất chia hết của một tổng:
(ab + cd + eg) chia hết cho 11 (giả thiết),⇒ ab hoặc cd hoặc eg chia hết cho 11
⇒ abcdeg chia hết cho 11 (tính chất a ⋮ b, thì ac ⋮ b)
Theo tính chất chia hết cho 11:
abcdeg = ab.10000 + cd.100 + eg
abcdeg = 9999.ab + 99.cd + ab + cd + eg
abcdeg = 9999ab + 99cd + (ab + dc + eg)
Mà 9999ab ⋮ 11, 99cd ⋮ 11, (ab + cd + eg) ⋮ 11
⇒ abcdeg ⋮ 11
Ta có
abcdeg = ab.10000+cd.100+eg
=9999.ab+ab+99.cd+cd+eg
=(9999.ab+99.cd)+(ab+cd+eg)
Vì 9999.ab+99.cd chia hết cho 11, ab+cd+eg chia hết cho 11vậy ababcdeg chia hết cho 11
tham khảo ở đây nha: Câu hỏi của Tân Hoàn Châu - Toán lớp 6 - Học toán với OnlineMath
t i c k nhé!! 465675678897808909568483732574568568876863245345445657665
abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)
Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11
=> abcdeg chia hết cho 11 (đpcm)
Cho mình **** nha
ê Nguyễn Trung Hiếu copy zừa thui chứ