tim x (-2/1.3+-2/3.5+...+-2/47.49)-2(x+1)=-3/1.2+-3/2.3+...+-3/48.49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)
Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)
Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)
=> A = 98B
Ta có: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\) (1)
Xét vế trái ta có:
\(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x\)
\(=10.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(=10.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)+2x\)
\(=10.\left(1-\frac{1}{50}\right)+2x\)
\(=10.\frac{49}{50}+2x\)
\(=\frac{49}{5}+2x\) (2)
Xét vế phải ta có:
\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)-7x\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)-7x\)
\(=2.\left(1-\frac{1}{49}\right)-7x\)
\(=2.\frac{48}{49}-7x\)
\(=\frac{96}{49}-7x\) (3)
Từ (1), (2) và (3) => \(\frac{49}{5}+2x=\frac{96}{49}-7x\)
\(\Rightarrow2x+7x=\frac{96}{49}-\frac{49}{5}\)
\(\Rightarrow9x=\frac{480}{245}-\frac{2401}{245}\)
\(\Rightarrow9x=-\frac{1921}{245}\)
\(\Rightarrow x=-\frac{1921}{245}:9=-\frac{1921}{2205}\)
Vậy \(x=-\frac{1921}{2205}\)
Chúc bạn học tốt!
Ta có:\(\left(10-\frac{10}{2}+\frac{10}{2}-\frac{10}{3}+...+\frac{10}{49}-\frac{10}{50}\right)+2x=\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{47}-\frac{2}{49}\right)-7x\)
\(\left(10-\frac{10}{50}\right)+2x=\left(2-\frac{2}{49}\right)-7x\)
\(\frac{49}{5}+2x=\frac{96}{49}-7x\)
\(7x+2x=\frac{96}{49}-\frac{49}{5}\)
\(9x=-\frac{1921}{245}\)
\(x=-\frac{1921}{245}:9\)
\(x=-\frac{1921}{2205}\)
Vậy \(x=-\frac{1921}{2205}\)
\(\Leftrightarrow2x+10\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{47\cdot49}\right)-7x\)
\(\Leftrightarrow2x+10\cdot\dfrac{49}{50}=2\left(1-\dfrac{1}{49}\right)-7x\)
\(\Leftrightarrow9x=-\dfrac{1921}{245}\)
hay x=-1921/2205
\(M=\dfrac{2^2.3^2.4^2.....20^2}{1.3.2.4.3.5.4.6.5.7.6.8.7.9....19.21}=\)
\(=\dfrac{2^2.3^2.4^2....20^2}{1.2.3^2.4^2....19^2.20.21}=\dfrac{2.20}{21}=\dfrac{40}{21}\)
\(N=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{10}{11}=\dfrac{1}{11}\)
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{37}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\cdot\frac{48}{49}=\frac{1}{x}\)
\(\frac{1}{x}=\frac{24}{49}\)
=>x=49/24
câu 1
Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1-1/100 A=99/100 B= (1/5.6+1/6/7+...+1/101.102).3 B=(1/5-1/6+1/6-1/7+...+1/101-1/102).3 B=(1/5-1/102).3 B=97/170
1) Tính
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
b: Tổng của N là:
\(\dfrac{49\cdot48}{2}=49\cdot24=1176\)