tìm x,y biết:
l3+yl+l2x+yl=0
làm nhanh giúp mình với , mình đag cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|2x - 1| + |1 - y| = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
=> 1-y = 0
=> y = 1 - 0 = 0
Vậy x = 1/2 tại y = 0
|x - 3y| + (y+1)2 = 0
=> \(\left(y+1\right)^2=0\rightarrow y+1=0;y=-1\)
Thay vào ta có: |x - 3.(-1) | = 0
=> x - (-3) = 0
=> x =-3
Vây x = -3 tại y = -1
Ta có \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left|2x-y\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|3x-5\right|+\left|2x-y\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x-5=0\\2x-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{10}{3}\end{cases}}\)
Vậy x = 5/3 ; y = 10/3 là giá trị cần tìm
Vì \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left|2x-y\right|\ge0\forall x,y\end{cases}}\Rightarrow\left|3x-5\right|+\left|2x-y\right|\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x-5=0\\2x-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{10}{3}\end{cases}}\)
Vậy x = 5/3 ; y = 10/3
Vì
\(\left|x-2\right|\ge0\)
\(\left(y+2x\right)^2\ge0\)
\(\left|z+y\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left(y+2x\right)^2+\left|z+y\right|\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left(y+2x\right)^2=0\\\left|z+x\right|=0\end{cases}}\)
=> x = 2
<=> ( y + 2.2 )2 = 0
=> y + 4 = 0
=> y = - 4
<=> |z + ( - 4 )|= 0
<=> z = 4
Vậy x = 2; y = - 4 ; z = 4
Ta có:\(\left|x-2\right|=0\Rightarrow x=2\)
Tiếp tục tìm y, thế x, ta có: \(\left(y+2.2\right)^2=0\)
\(\Rightarrow\left(y+4\right)^2=0\)
\(\Rightarrow y+4=0\)
\(\Rightarrow y=-4\)
Đã có y, ta tiếp tục tìm z: \(\left|z+-4\right|=0\)\(\Rightarrow z=4\)
Vậy \(x=2;y=-4;z=4\)
3 + | x + 2 | = 2
| x + 2 | = 2 - 3
| x + 2 | = - 1
\(\Rightarrow\)x + 2 = 1 hoặc - 1
Ta xét 2 trường hợp :
TH1 : x + 2 = 1
x = 1 - 2
x = - 1
TH2 : x + 2 = - 1
x = - 1 - 2
x = - 3
Vậy x \(\in\){ - 1 ; - 3 }
Bài 2:
1.
$=(\frac{1}{7}+\frac{2}{7}+\frac{4}{7})+(\frac{3}{11}+\frac{8}{11})+2010$
$=\frac{7}{7}+\frac{11}{11}+2010=1+1+2010=2012$
2.
$=(\frac{2}{3}-\frac{2}{3})+(\frac{-3}{4}+\frac{3}{4})+(\frac{4}{5}-\frac{4}{5})+(\frac{-5}{6}+\frac{5}{6})+(\frac{6}{7}-\frac{6}{7})+(\frac{-7}{8}+\frac{7}{8})+\frac{1}{2012}$
$=0+0+0+0+0+0+\frac{1}{2012}=\frac{1}{2012}$
3.
$=\frac{1}{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+...+\frac{1}{20-19}{19.20}$
$=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{19}-\frac{1}{20}$
$=\frac{1}{4}-\frac{1}{20}=\frac{1}{5}$
4.
\(=182\left[\frac{1+\frac{1}{5}-\frac{2}{7}+\frac{5}{13}}{2(1+\frac{1}{5}-\frac{2}{7}+\frac{5}{13})}: \frac{4(1-\frac{1}{33}-\frac{1}{57}+\frac{1}{7000})}{1-\frac{1}{33}-\frac{1}{57}+\frac{1}{7000}}\right]:\frac{10101\times 91}{10101\times 80}\)
$=182(\frac{1}{2}:4):\frac{91}{80}=182\times \frac{1}{8}\times \frac{80}{91}$
$=\frac{91\times 2\times 80}{8\times 91}=\frac{160}{8}=20$
Ta có: \(\left|y+3\right|\ge0\forall y\)
\(\left|2x+y\right|\ge0\forall x,y\)
Do đó: \(\left|y+3\right|+\left|2x+y\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}y+3=0\\2x+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-3\end{matrix}\right.\)