K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

a.

\(AB^2+AC^2=4,5^2+6^2=56,25\)

\(BC^2=7,5^2=56,25\)

\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo

b.

Theo định lý phân giác: \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow DB=\dfrac{3}{4}DC\)

Mà \(DB+DC=BC=7,5\)

\(\Rightarrow\dfrac{3}{4}DC+DC=7,5\Rightarrow DC=\dfrac{30}{7}\left(cm\right)\)

Do DN và AB cùng vuông góc AC \(\Rightarrow DN||AB\)

Áp dụng định lý Talet:

\(\dfrac{DN}{AB}=\dfrac{DC}{BC}=\dfrac{4}{7}\Rightarrow DN=\dfrac{4}{7}AB=\dfrac{18}{7}\left(cm\right)\)

Tứ giác AMDN là hình chữ nhật (có 3 góc vuông)

Mà AD là đường chéo đồng thời là phân giác theo giả thiết

\(\Rightarrow AMDN\) là hình vuông

\(\Rightarrow S_{AMDN}=DN^2=\dfrac{324}{49}\approx6,6\left(cm^2\right)\)

NV
25 tháng 7 2021

undefined

1: Xét tứ giác AMDN có

góc AMD=góc AND=góc MAN=90 độ

AD là phan giác

=>AMDN là hình vuông

2: BC=căn 3^2+4^2=5cm

AD là phân giác

=>DB/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét tứ giác AMDN có \(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

nên AMDN là hình chữ nhật

c: AMDN là hình chữ nhật

=>AD cắt MN tại trung điểm của mỗi đường

mà I là trung điểm của AD

nên I là trung điểm của MN

=>M,I,N thẳng hàng

d: Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên \(AD=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

2 tháng 11 2017

muốn giúp lắm nhưng mới lớp 7 chỉ bt làm phần a,d nghĩ bài a,d là toán lớp 7

4 tháng 7 2018

ai k dung mik giai cho

7 tháng 3 2016

Có vẻ bài này hơi không phù hợp với học sinh lớp 9. Đầu tiên ta sẽ phải sử dụng định lý sin cho tam giác: Trong tam giác ABC với bán kính đường tròn ngoại tiếp R thì tỷ số giữa cạnh và sin góc đối diện bằng 2R. Nhận xét tiếp theo: Diện tích tam giác bất kỳ một nửa tích độ dài hai cạnh nhân với sin của góc xen giữa hai cạnh đó.

Ta có \(S\left(ABC\right)=S\left(ABF\right)+S\left(ACF\right)=\frac{1}{2}AB\cdot AF\cdot\sin BAF+\frac{1}{2}AC\cdot AF\cdot\sin CAF\)
\(=\frac{1}{2}AB\cdot\frac{CD}{2R}\cdot AF+\frac{1}{2}AC\cdot AF\cdot\frac{BD}{2R}=\frac{AF}{4R}\left(AB\cdot CD+AC\cdot BD\right).\)  Do tứ giác ABDC nội tiếp nên theo định lý Ptoleme ta có \(AB\cdot CD+AC\cdot BD=AD\cdot BC.\)  LSuy ra \(S\left(ABC\right)=\frac{AF\cdot AD\cdot BC}{4R}.\)


Tiếp theo ta có \(S\left(AMDN\right)=S\left(AMD\right)+S\left(ADN\right)=\frac{1}{2}AM\cdot AD\cdot\sin BAD+\frac{1}{2}AD\cdot AN\cdot\sin DAC\)

\(=\frac{1}{2}AF\cdot\cos DAC\cdot AD\cdot\sin BAD+\frac{1}{2}AD\cdot AF\cdot\cos BAD\cdot\sin DAC\)

\(=\frac{1}{2}AF\cdot AD\cdot\left(\cos DAC\cdot\sin BAD+\sin DAC\cdot\cos BAD\right)=\frac{1}{2}\cdot AF\cdot AD\sin\left(DAC+BAD\right)\)
\(=\frac{1}{2}AF\cdot AD\cdot\sin BAC=\frac{1}{2}AF\cdot AD\cdot\frac{BC}{2R}=\frac{AF\cdot AD\cdot BC}{4R}.\)

Ở đây ta sử dụng công thức hình chiếu \(\sin\left(a+b\right)=\sin a\cos b+\cos a\sin b.\)

Vậy ta có tứ giác AMDN và tam giác ABC cùng diện tích.
 

8 tháng 4 2020

Karin Korano             

câu hỏi này của lớp 11 nhé !

1 cách trình bày khác; ngắn gọn hơn nha Thầy Giáo Toán

đặt ^BAE=^CAE=α;  EAF=β

Ta có S∆ABC =1/2.AB.AF.sin(α+β)+1/2 .AC.AF sin α =AF/4R (AB.CD+AC.BD)

(R-là bán kính đường tròn ngoại tiếp tam giác ABC) (1)

Diện tích tứ giác ADMN là

SADMN =1/2.AM.AD.sin α +1/2AD.AN.sin(α+β) = 1/2.AD.AF.sin(2α +β) =AF/4R.AD.BC (2)

Vì tứ giác ABDC nội tiếp trong đường tròn nên theo định lí Ptoleme ta có

: AB.CD + AC.BD = AD.BC (3).

Từ (1), (2), (3) ta có điều phải chứng minh

 

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

b)Để SMBC = SABC thì M phải cách BC một khoảng bằng AH. Do đó M phải nằm bên trên hai đường thẳng song song với BC, cách BC một khoảng bằng 3,6cm.

24 tháng 4 2017

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

b)Để SMBC = SABC thì M phải cách BC một khoảng bằng AH. Do đó M phải nằm bên trên hai đường thẳng song song với BC, cách BC một khoảng bằng 3,6cm.

29 tháng 12 2023

a: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{30}=\dfrac{CD}{40}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=50cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{50}{7}\)

=>\(BD=3\cdot\dfrac{50}{7}=\dfrac{150}{7}\left(cm\right);CD=4\cdot\dfrac{50}{7}=\dfrac{200}{7}\left(cm\right)\)

b: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

=>AMDN là hình chữ nhật

Hình chữ nhật AMDN có AD là phân giác của góc MAN

nên AMDN là hình vuông

30 tháng 12 2023

bạn làm luôn phần c được không ??

15 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

hay ΔABC vuông tại A

25 tháng 8 2016

a, Xét ΔABH và ΔAHD có

       Góc A chung

        Góc ADH=Góc AHB=90° 

=> ΔABH ~ΔAHD(g.g)

=> AH/AB=AD/AH

=> AB.AD=AH²(1)

Xét ΔAEH và ΔAHC có:

Góc A chung 

Góc AEH = góc AHC

=>ΔAEH~ΔAHC(g.g)

=> AE/AH=AH/AC

=>AE.AC=AH²(2)

Từ (1);(2) => AD.AB=AE.AC(đpcm)

b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI

=> ΔAIC cân tại I

=>góc IAC =góc ICA

Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI

Mà góc BAI =góc AED(cùng phụ)

         => góc IBA=góc AED

Mà ABI+góc ACI= 90°

=>    gócAED + góc IAC=90° 

      => DEvuông góc vs AI

c, 

27 tháng 8 2016

mình làm câu c,d nek bạn

c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)

        => EN là đường trung tuyến ứng vs cạnh huyền

        => EN=NH=NC( vì N là trung điểm của HC)

         => \(\Delta\)ENC cân tại N(NE=NC cmt)

        => góc NEC=góc NCE(hai góc đáy) (1)

     chứng minh tương tự trong \(\Delta\)BMD cân tại M

       => góc DBM=góc MDB(2)

ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ

                                            =>góc MDB+ góc NEC(vì (1);(2))    (3)

      và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)

từ (3);(4)=>góc BDM+góc ADE=90 độ

              => góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))

              => DM\(\perp\) DE (*)

     và    góc DEA+ góc NEC=90 độ

            => góc HDE+góc HEN= 90 độ 

           => DE\(\perp\) EN (**)

từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)

d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)

=> OH=OA=OD=OE (t/c đường chéo hcn)

=> OH=OA=HA/2

ta có HM+HN=BM+NC(vì BM=MH; NH=NC)

    =>  MH+HN=BC/2=>MN=1/2 BC

 diện tích \(\Delta\)ABC =1/2. AH. BC

 diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC

Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)

                                         =4

Mình nghĩ là làm như vậy, có gì bạn góp ý nhahihi