1) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E là hình chiếu của H lên AB và AC. Biết AB= 6cm, BC= 10cm
a)Tính BH, AH,\(\dfrac{AD}{AE}\)
b)CM: DE= BC. sinB.cosB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác ADHE có :
^A = ^ADH = ^HEA = 900
Vậy tứ giác ADHE là hcn
Vậy AH = DE ( 2 đường chéo bằng nhau )
b, Xét tam giác AEH và tam giác AHC có :
^AEH = ^AHC = 900
^A _ chung
Vậy tam giác AEH ~ tam giác AHC ( g.g )
=> AH/AC = AE/AH => AH^2 = AE.AC (1)
tương tự với tam giác ADH ~ tam giác AHB (g.g)
=> AD/AH = AH/AB => AH^2=AD.AB (2)
Từ (1) ; (2) suy ra AE.AC = AD.AB
c, Xét tam giác ABH và tam giác CAH
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác ABH ~ tam giác CAH (g.g)
=> AH/CH = BH/AH => AH^2 = BH.CH
=> CH = AH^2/BH = 144/9 = 16
=> BC = BH + CH = 25 cm
Diện tích tam giác ABC là : SABC = 1/2 . AH . BC
= 1/2 . 12 . 25 = 150 cm2
d) Ta có: \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow HDAE\) là hình chữ nhật
\(\Rightarrow DE=AH=\sqrt{BH.HC}=\sqrt{4.9}=6\left(cm\right)\)
Ta có: \(DM\parallel EN (\bot DE)\) và \(\angle MDE=\angle DEN=90\)
\(\Rightarrow MDEN\) là hình thang vuông
Vì \(\Delta BDH\) vuông tại D có M là trung điểm BH
\(\Rightarrow MD=\dfrac{1}{2}BH=\dfrac{1}{2}.4=2\left(cm\right)\)
Vì \(\Delta HEC\) vuông tại E có M là trung điểm CH
\(\Rightarrow EN=\dfrac{1}{2}CH=\dfrac{1}{2}.9=\dfrac{9}{2}\left(cm\right)\)
\(\Rightarrow S_{DENM}=\dfrac{1}{2}.\left(DM+EN\right).DE=\dfrac{1}{2}.\left(2+\dfrac{9}{2}\right).6=\dfrac{39}{2}\left(cm^2\right)\)
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
a, Xét ΔABH và ΔAHD có
Góc A chung
Góc ADH=Góc AHB=90°
=> ΔABH ~ΔAHD(g.g)
=> AH/AB=AD/AH
=> AB.AD=AH²(1)
Xét ΔAEH và ΔAHC có:
Góc A chung
Góc AEH = góc AHC
=>ΔAEH~ΔAHC(g.g)
=> AE/AH=AH/AC
=>AE.AC=AH²(2)
Từ (1);(2) => AD.AB=AE.AC(đpcm)
b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI
=> ΔAIC cân tại I
=>góc IAC =góc ICA
Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI
Mà góc BAI =góc AED(cùng phụ)
=> góc IBA=góc AED
Mà ABI+góc ACI= 90°
=> gócAED + góc IAC=90°
=> DEvuông góc vs AI
c,
mình làm câu c,d nek bạn
c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)
=> EN là đường trung tuyến ứng vs cạnh huyền
=> EN=NH=NC( vì N là trung điểm của HC)
=> \(\Delta\)ENC cân tại N(NE=NC cmt)
=> góc NEC=góc NCE(hai góc đáy) (1)
chứng minh tương tự trong \(\Delta\)BMD cân tại M
=> góc DBM=góc MDB(2)
ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ
=>góc MDB+ góc NEC(vì (1);(2)) (3)
và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)
từ (3);(4)=>góc BDM+góc ADE=90 độ
=> góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))
=> DM\(\perp\) DE (*)
và góc DEA+ góc NEC=90 độ
=> góc HDE+góc HEN= 90 độ
=> DE\(\perp\) EN (**)
từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)
d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)
=> OH=OA=OD=OE (t/c đường chéo hcn)
=> OH=OA=HA/2
ta có HM+HN=BM+NC(vì BM=MH; NH=NC)
=> MH+HN=BC/2=>MN=1/2 BC
diện tích \(\Delta\)ABC =1/2. AH. BC
diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC
Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)
=4
Mình nghĩ là làm như vậy, có gì bạn góp ý nha
a: Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay AC=8
Xét ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
\(\Leftrightarrow6AD=8AE\)
hay \(\dfrac{AD}{AE}=\dfrac{8}{6}=\dfrac{4}{3}\)
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>AH=EF
b: Ta có: ΔABH vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=6^2-3,6^2=23,04\)
=>\(HA=\sqrt{23,04}=4,8\left(cm\right)\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\)
=>\(AE\cdot6=4,8^2=23,04\)
=>\(AE=\dfrac{23.04}{6}=3,84\left(cm\right)\)
AEHF là hình chữ nhật
=>AE=HF
mà AE=3,84cm
nên HF=3,84cm
a) tam giác ABC vuông tại A nên áp dụng Py-ta-go:
\(\Rightarrow AC^2=BC^2-AB^2=10^2-6^2=64\Rightarrow AC=8\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
tam giác AHB vuông tại H có đường cao HD nên áp dụng hệ thức lượng
\(\Rightarrow AD.AB=AH^2\)
tam giác AHC vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AH^2=AE.AC\Rightarrow AE.AC=AD.AB\Rightarrow\dfrac{AD}{AE}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\)
b) Vì \(\angle ADH=\angle AEH=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật
\(\Rightarrow DE=AH\)
Ta có: \(BC.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AB.AC}{BC}=AH\)
\(\Rightarrow DE=BC.sinB.cosB\)