(tanx+7)tanx+(cotx+7)cotx=-14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)
\(\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}+7=\dfrac{cos^22x}{sin^22x}\)
\(\Leftrightarrow\dfrac{sin^2x+cos^2x}{sinx.cosx}+7=\dfrac{1-sin^22x}{sin^22x}\)
\(\Leftrightarrow\dfrac{2}{sin2x}+7=\dfrac{1}{sin^22x}-1\)
\(\Leftrightarrow\dfrac{1}{sin^22x}-\dfrac{2}{sin2x}-8=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{sin2x}=4\\\dfrac{1}{sin2x}=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=\dfrac{1}{4}\\sin2x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}arcsin\left(\dfrac{1}{4}\right)+k\pi\\x=\dfrac{\pi}{2}-\dfrac{1}{2}arcsin\left(\dfrac{1}{4}\right)+k\pi\\x=-\dfrac{\pi}{12}+k\pi\\x=\dfrac{7\pi}{12}+k\pi\end{matrix}\right.\)
Chọn B.
Ta có: A = (tanx + cotx)2 - ( tanx - cotx)2
= tan2x + 2tanx.cot x + cot2x - ( tan2x - 2tanx.cotx + cot2x)
= 4tanx.cotx = 4.
\(\dfrac{tanx+1}{tanx-1}=\dfrac{1+cotx}{1-cotx}\)
=>(tanx+1)(1-cotx)=(1+cotx)(tan x-1)
=>tan x-1+1-cot x=tan x-1+1-cot x
=>tan x-cot x=tan x-cot x(luôn đúng)
=>ĐPCM
Chắc bạn ghi sai đề, là \(tanx+cotx=m\) mới đúng (vì \(tanx.cotx=1\))
\(\Rightarrow\left(tanx+cotx\right)^2=m^2\)
\(\Leftrightarrow\left(tanx-cotx\right)^2+4tanx.cotx=m^2\)
\(\Leftrightarrow\left(tanx-cotx\right)^2=m^2-4\)
\(\Rightarrow\left|tanx-cotx\right|=\sqrt{m^2-4}\)
ĐKXĐ: \(x\notin\left\{\dfrac{\Omega}{2}+k\Omega;\Omega+k\Omega\right\}\)
(tanx+7)*tanx+(cotx+7)*cotx=-14
=>\(tan^2x+cot^2x+7\left(tanx+cotx\right)=-14\)
=>\(\left(tanx+cotx\right)^2-2\cdot cotx\cdot tanx+7\left(tanx+cotx\right)+14=0\)
=>\(\left(tanx+cotx\right)^2+7\left(tanx+cotx\right)+12=0\)
=>\(\left(tanx+\dfrac{1}{tanx}+3\right)\left(tanx+\dfrac{1}{tanx}+4\right)=0\)
=>\(\dfrac{tan^2x+3tanx+1}{tanx}\cdot\dfrac{tan^2x+4tanx+1}{tanx}=0\)
=>\(\left[{}\begin{matrix}tan^2x+3tanx+1=0\\tan^2x+4tanx+1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}tanx=\dfrac{-3+\sqrt{5}}{2}\\tanx=\dfrac{-3-\sqrt{5}}{2}\\tanx=-2+\sqrt{3}\\tanx=-2-\sqrt{3}\end{matrix}\right.\)
=>\(x\in\left\{arctan\left(\dfrac{-3+\sqrt{5}}{2}\right)+k\Omega;arctan\left(\dfrac{-3-\sqrt{5}}{2}\right)+k\Pi;arctan\left(-2+\sqrt{3}\right)+k\Omega;arctan\left(-2-\sqrt{3}\right)+k\Omega\right\}\)