Tìm số tự nhiên n dể dược phân số \(\frac{n+3}{2n-2}\) có giá trị là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4n+1}{2n+3}=\dfrac{4n+6-5}{2n+3}=\dfrac{2\left(2n+3\right)-5}{2n+3}=2-\dfrac{5}{2n+3}\)
Để phân số trên nguyên thì \(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng:
2n+3 | -5 | -1 | 1 | 5 |
n | -4 | -2 | -1 | 1 |
Vậy \(n\in\left\{-4;-2;-1;1\right\}\)
Để phân số \(\frac{n+3}{n-2}\)có giá trị nguyên
=> n + 3 \(⋮\)n - 2
=> n - 2 + 5 \(⋮\)n - 2
=> ( n - 2 ) + 5 \(⋮\)n - 2
=> 5 \(⋮\)n - 2
=> n - 2 \(\in\)Ư ( 5 ) = { 1 ; 5 }
Với n - 2 = 1 => n = 3
Với n - 2 = 5 => n = 7
Vậy : n \(\in\){ 3 ; 7 }
Để A nguyên
=> n+3 chia hết cho 2n-2
=> 2n+6 chia hết cho 2n-2
=> 2n-2+8 chia hết cho 2n-2
Vì 2n-2 chia hết cho 2n-2
=> 8 chia hết cho 2n-2
=> 2n-2 thuộc Ư(8)
Vì 2n-2 chẵn
=> 2n-2 thuộc {-8; -4; -2; 2; 4; 8}
2n-2 | n |
-8 | -3 (loại) |
-4 | -1 (loại) |
-2 | 0 |
2 | 2 |
4 | 3 |
8 | 5 |
+ Nếu n = 0
=> A = \(\frac{0+3}{2.0-2}=\frac{3}{-2}\)(loại)
+ Nếu n = 2
=> A = \(\frac{2+3}{2.2-2}=\frac{5}{2}\) (loại)
+ Nếu n = 3
=> A = \(\frac{3+3}{2.3-2}=\frac{6}{4}=\frac{3}{2}\) (loại)
+ Nếu n = 5
=> A = \(\frac{5+3}{5.2-2}=\frac{8}{8}=1\)(TM)
KL: n = 5
Để \(\frac{n+3}{2n-2}\) thì n + 3 \(⋮\)2n - 2
2 . ( n + 3 ) \(⋮\)2n - 2
2n + 6 \(⋮\)2n - 2
2n - 2 + 10 \(⋮\)2n - 2
Mà 2n - 2 \(⋮\)2n - 2 => 10 \(⋮\)2n - 2 hay 2n - 2 \(\in\)Ư ( 10 ) = { 1, 2, 5, 10, -1, -2, -5, -10 }
Rồi tính là xong nhé !
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
Để phân số n+3/2n-2 có giá trị nguyên thì:
n+3 chia hết cho 2n-2
=>2n+6 chia hết cho 2n-2
=>2n-2+8 chia hết cho 2n-2
=>8 chia hết cho 2n-2
=>2n-2 thuộc Ư(8)={1;-1;2;-2;4;-4;8;-8}
=>n=3/2;1/2;2;0;3;-1;5;-3
Mà n thuộc N nên: n=0;2;3;5
Để phân số n+3/2n-2 có giá trị nguyên thì:
n+3 chia hết cho 2n-2
=>2n+6 chia hết cho 2n-2
=>2n-2+8 chia hết cho 2n-2
=>8 chia hết cho 2n-2
=>2n-2 thuộc Ư(8)={1;-1;2;-2;4;-4;8;-8}
=>n=3/2;1/2;2;0;3;-1;5;-3
Mà n thuộc N nên: n=0;2;3;5