Bài 3: Thực hiện các phép tính sau:
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
c) \(\sqrt{6-4\sqrt{2}}+\)\(\sqrt{22-12\sqrt{2}}\)
hộ mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=\sqrt{2^2+2\cdot2\cdot\left(2\sqrt{5}\right)+\left(2\sqrt{5}\right)^2}\) \(+\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\sqrt{5}+2^2}=\sqrt{\left(2+2\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)=\(2+2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}\)
b,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=3-2\sqrt{2}+2\sqrt{2}+1=4\)
c,\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2-\sqrt{2}+3\sqrt{2}-2=2\sqrt{2}\)
a,\(\sqrt{\left(\sqrt{3}-1\right)^2}\) \(+\sqrt{\left(\sqrt{3}+1\right)^2}=2\sqrt{3}\)
b. \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=3\sqrt{5}\)
c,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=4\)
d.\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2\sqrt{2}\)
Lời giải:
a.
\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)
$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$
b.
$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$
$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$
$=|\sqrt{3}-3|+|\sqrt{3}+3|$
$=(3-\sqrt{3})+(\sqrt{3}+3)=6$
c.
$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$
$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$
$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$
a,
\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\\ =\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\\ =\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\\ =\sqrt{3}-1+\sqrt{3}+1\\ =2\sqrt{3}\)
b,
\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{24+4\cdot\sqrt{4}\cdot\sqrt{5}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{24+4\sqrt{20}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{20+4\sqrt{20}+4}+\sqrt{5-4\sqrt{5}+4}\\ =\sqrt{\left(\sqrt{20}+4\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{20}+4\right|+\left|\sqrt{5}-2\right|\\ =\sqrt{20}+4+\sqrt{5}-2\\ =2+2\sqrt{5}+\sqrt{5}\\ =2+3\sqrt{5}\)
c,
\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\\ =\sqrt{17-6\cdot\sqrt{4}\cdot\sqrt{2}}+\sqrt{9+2\cdot\sqrt{4}\cdot\sqrt{2}}\\ =\sqrt{17-6\sqrt{8}}+\sqrt{9+2\sqrt{8}}\\ =\sqrt{9-6\sqrt{8}+8}+\sqrt{8+2\sqrt{8}+1}\\ =\sqrt{\left(3-\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{8}+1\right)^2}\\ =\left|3-\sqrt{8}\right|+\left|\sqrt{8}+1\right|\\ =3-\sqrt{8}+\sqrt{8}+1\\ =4\)
d,
\(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\\ =\sqrt{6-4\sqrt{2}}+\sqrt{22-4\cdot\sqrt{9}\cdot\sqrt{2}}\\ =\sqrt{6-4\sqrt{2}}+\sqrt{22-4\sqrt{18}}\\ =\sqrt{4-4\sqrt{2}+2}+\sqrt{18-4\sqrt{18}+4}\\ =\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{18}-2\right)^2}\\ =\left|2-\sqrt{2}\right|+\left|\sqrt{18}-2\right|\\ =2-\sqrt{2}+\sqrt{18}-2\\ =-\sqrt{2}+\sqrt{18}\\ =-\sqrt{2}+3\sqrt{2}\\ =2\sqrt{2}\)
a) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|=\left(\sqrt{3}+\sqrt{2}\right)-\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|=\left(\sqrt{5}-\sqrt{2}\right)-\left(\sqrt{5}+\sqrt{2}\right)\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}=-2\sqrt{2}\)
c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|=\left(\sqrt{3}-1\right)+\left(\sqrt{3}+1\right)\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
d) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=2\sqrt{6+2\sqrt{5}}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{5}-2=2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
1. \(=\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}=\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
1/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\left(1+\sqrt{12}\right)^2}+\sqrt{3+\left(1+\sqrt{12}\right)^2}\)
\(=\sqrt{5-\left|1+\sqrt{12}\right|}+\sqrt{3+\left|1+\sqrt{12}\right|}\)
\(=\sqrt{5-1-\sqrt{12}}+\sqrt{3+1+\sqrt{12}}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=2\sqrt{5}+2+\sqrt{5}-2\)
\(=3\sqrt{5}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=3-2\sqrt{2}+2\sqrt{2}-1\)
=2
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=2\sqrt{2}\)