1 x 2 x 9 x 0 + 14 = ????????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+6\sqrt{x-1}=14\\ \Leftrightarrow7\sqrt{x-1}=14\\ \Leftrightarrow\sqrt{x-1}=2\Leftrightarrow x-1=4\\ \Leftrightarrow x=5\left(tm\right)\\ b,ĐK:-2\le x\le2\\ PT\Leftrightarrow\sqrt{2-x}\left(1-\sqrt{2+x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2-x=0\\2+x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
a) ĐKXĐ: \(x\ge1\)
\(pt\Leftrightarrow\sqrt{x-1}+6\sqrt{x-1}=14\)
\(\Leftrightarrow7\sqrt{x-1}=14\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\Leftrightarrow x=5\left(tm\right)\)
b) ĐKXĐ: \(-2\le x\le2\)
\(pt\Leftrightarrow\sqrt{2-x}-\sqrt{\left(2-x\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(1-\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+2=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
a)4x+4-3x+1=14
x+5=14
x=11
b)trường hợp 1 x2-9=0
x2=9
->x=3;-3
-trường hợp 2: x+2=0
x=-2
c)-th1:x2+9=0
x2=-9
->x rỗng
d)xy+2x-y-2=0
(xy-y)+(2x-2)=0
y(x-1)+2(x-1)=0
(y+2)(x-1)=0
th1: y+2=0
y=-2
th2:x-1=0
x=1
(th1: trường hợp 1)
1) \(2x\left(x-3\right)+5x-15=0\)
\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\left(2x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-5}{2}\end{matrix}\right.\)
2) \(x\left(2x-7\right)-4x+14=0\)
\(x\left(2x-7\right)-2\left(2x-7\right)=0\)
\(\left(2x-7\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)
3) \(x^2-12x+36=0\)
\(\left(x-6\right)^2=0\)
\(x-6=0\)
\(x=6\)
4) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)
\(\left(x^3+3^3\right)-x\left(x^2-1\right)-27=0\)
\(x^3+27-x^3+x-27=0\)
\(x=0\)
a. Ta có: x2-11=0
⇌ x2=11
⇌\(\left[{}\begin{matrix}x=\sqrt{11}\\x=-\sqrt{11}\end{matrix}\right.\)
b.Ta có: x2-2\(\sqrt{13}\)x+\(\sqrt{13}\)=0
⇌(x-\(\sqrt{13}\))2=0
⇌ x-\(\sqrt{13}\)=0
⇌ x=\(\sqrt{13}\)
c. Ta có : x2-9x+14=0
⇌ (x-7)(x-2)=0
⇌\(\left[{}\begin{matrix}x-7=0\\z-2=0\end{matrix}\right.\)⇌\(\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)
d.Ta có \(\sqrt{x}\)-6=13
⇌\(\sqrt{x}\)=19
⇌x = 361
e.Ta có: \(\sqrt{x}\)+9=3
Vì \(\sqrt{x}\)≥0∀x⇒\(\sqrt{x}\)+9≥9
⇒ ptvn
f.Ta có:\(\sqrt{x^2}\)-2x+4=x-1
⇌ |x|-3x-5=0(*)
TH1: x≥0
⇒ pt(*) ⇌ x-3x+5=0⇌-2x-5=0⇒x=\(\dfrac{5}{2}\)(t/m)
TH2: x<0
⇒ pt(*) ⇌ -x-3x+5=0⇌-4x+5=0⇒x=\(\dfrac{5}{4}\)(l)
Vậy x=\(\dfrac{5}{2}\)là nghiệm của phương trình
\(=0+14=14\)
14