K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2022

`Answer:`

ĐK: `x^3-1>=0`

`<=>(x-1)(x^2+x+1)>0`

`<=>x>=1`

PT tương đương: `2.(x^2+x+1)+3(x-1)=7\sqrt{(x^2+x+1)(x-1)}`

Đặt `a=\sqrt{x^2+x+1}<=>a^2=x^2+x+1;b=\sqrt{x-1}<=>b^2=x-1`

PT tương đương: `2a^2+3b^2=7ab`

`<=>2a^2-7ab+3b^2=0`

`<=>2a^2-ab-6ab+3b^2=0`

`<=>a(2a-b)-3b(2a-1)=0`

`<=>(2a-b)(a-3b)=0`

`<=>2a=b` hoặc `a=3b`

Với `2a=b:`

`2\sqrt{x^2+x+1}=3\sqrt{x-1}`

`<=>4(x^2+x+1)=9(x-1)`

`<=>4x^2-5x+13=0`

`\Delta=5^2-4.4.13<0`

Vậy phương trình vô  nghiệm.

Với `a=3b:`

`\sqrt{x^2+x+1}=3\sqrt{x-1}`

`<=>x^2+x+1=9(x-1)`

`<=>x^2-8x+10=0`

`\Delta'=4^2-10=6`

`<=>x=4+-\sqrt{6}`

Vậy phương trình cố  nghiệm là `x=4+-\sqrt{6}`

`

20 tháng 9 2018

DKXD: x\(\ge1\)

Ta có: \(2x^2+5x-1=7\sqrt{x^3-1}\)\(\Leftrightarrow\left(2x^2+2x+2\right)+\left(3x-3\right)=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow2\left(x^2+x+1\right)+3\left(x-1\right)=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\forall x\)

Nen ta chia hai ve cua phuong trinh cho \(x^2+x+1,\)ta duoc

\(2+3\times\frac{x-1}{x^2+x+1}=7\sqrt{\frac{x-1}{x^2+x+1}}\)

Dat \(\sqrt{\frac{x-1}{x^2+x+1}}=t\)\(\left(t\ge0\right)\)ta có

\(2+3t^2=7t\Leftrightarrow3t^2-7t+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=\frac{1}{3}\end{cases}}\)

+) \(t=2\Rightarrow\frac{x-1}{x^2+x+1}=4\Rightarrow4x^2+3x+5=0\)

\(\left(ptvn\right)\)

+) \(t=\frac{1}{3}\Rightarrow\frac{x-1}{x^2+x+1}=\frac{1}{9}\)

TT bạn tu tinh nhé

28 tháng 4 2023

\(Đk:x\ge\dfrac{3}{2}\Rightarrow x>0\)

\(x^3-4x^2+5x-1-\sqrt{2x-3}=0\)

\(\Leftrightarrow2x^3-8x^2+10x-2-2\sqrt{2x-3}=0\)

\(\Leftrightarrow\left(2x^3-8x^2+8x\right)+\left[\left(2x-3\right)-2\sqrt{2x-3}+1\right]=0\)

\(\Leftrightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2\ge0\left(x>0\right)\\\left(\sqrt{2x-3}-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2\ge0\)

Do đó: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2=0\\\left(\sqrt{2x-3}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=2\)

Thử lại ta có x=2 là nghiệm duy nhất của phương trình đã cho.

 

x^3-4x^2+5x-1-căn 2x-3=0

=>\(x^3-4x^2+5x-2-\left(\sqrt{2x-3}-1\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2-\dfrac{2x-3-1}{\sqrt{2x-3}+1}=0\)

=>\(\left(x-2\right)\left[\left(x-1\right)\left(x-2\right)-\dfrac{2}{\sqrt{2x-3}+1}\right]=0\)

=>x-2=0

=>x=2

18 tháng 10 2018

c) Ta có:

\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)

\(\Leftrightarrow\frac{\sqrt{x^2+3}-2\sqrt{x}}{\sqrt{x}}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\sqrt{x^3+3x}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\\sqrt{x^3+3x}+2x=2\left(x+1\right)\end{cases}}\)

+) \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

+) \(\sqrt{x^3+3x}+2x=2x+2\Rightarrow x=1\)

19 tháng 10 2018

a/ Đặt \(\sqrt{2\left(x^2-x\right)}=a\)

\(\Rightarrow a^4-2a^2=a\)

\(\Leftrightarrow a\left(a+1\right)\left(a^2-a-1\right)=0\)

16 tháng 8 2017

\(5x+2\sqrt{x+1}-\sqrt{1-x}=-3\) \(\left(-1\le x\le1\right)\)

\(\Leftrightarrow\left(5x+3\right)+\dfrac{4\left(x+1\right)-\left(1-x\right)}{2\sqrt{x+1}+\sqrt{1-x}}=0\)

\(\Leftrightarrow\left(5x+3\right)+\dfrac{5x+3}{2\sqrt{x+1}+\sqrt{1-x}}=0\)

\(\Leftrightarrow\left(5x+3\right)\left(1+\dfrac{1}{2\sqrt{x+1}+\sqrt{1-x}}\right)=0\)

Pt \(1+\dfrac{1}{2\sqrt{x+1}+\sqrt{1-x}}=0\left(VT>0\right)\)

=> 5x + 3 = 0

<=> x = - 0,6 (nhận)

16 tháng 11 2017

b) Đặt \(u=\sqrt{1-x}\); \(v=\sqrt{1+x}\)

phương trình trở thành

\(2u-v+3uv=u^2+2\)\(\Rightarrow u^2-2u+v-3uv+2=0\)

lại có \(u^2+v^2=2\)

\(\Rightarrow u^2-2u-3uv+v+u^2+v^2=0\)

\(\Rightarrow\left(u-v-1\right)\left(2u-v\right)=0\)

đến đây thì easy rồi

16 tháng 11 2017

a)

Đặt \(\sqrt{2x+1}=t\) ;\(\sqrt{x}=k\)

Phương trình trở thành

\(\left(3k^2+t^2\right)t-\left(3t^2+k^2\right)k-1=0\)

\(\Leftrightarrow3k^2t+t^3-3t^2k-k^3-1=0\)

\(\Leftrightarrow\left(t-k\right)\left(t^2+kt+k^2\right)-3tk\left(t-k\right)-1=0\)

\(\Leftrightarrow\left(t-k\right)^3-1=0\)

\(\Leftrightarrow\left(t-k-1\right)\left(\left(t-k\right)^2+t-k+1\right)=0\)

do t > k => t - k > 0

\(\Rightarrow\left(t-k\right)^2+t-k+1>0\)

\(\Rightarrow t-k-1=0\)

\(\Leftrightarrow t=1+k\)\(\Leftrightarrow\sqrt{2x+1}=1+\sqrt{x}\)

\(\Leftrightarrow2x+1=x+2\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

END