\(\begin{cases}\left(18x+9\right)\sqrt{x^2+x+1}=y\sqrt{4y^2+27}\\\left(2y+3\right)^2=24\sqrt{x}\left(2y-9\right)\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge0;y\ge\frac{9}{2}\)
(1) \(\Leftrightarrow6\left(x+\frac{1}{2}\right)\sqrt{\left[3\left(x+\frac{1}{2}\right)\right]^2+\frac{27}{4}}=2y\sqrt{y^2+\frac{27}{4}}\)
Xét \(f\left(t\right)=2t\sqrt{t^2+\frac{27}{4}}\left(t>0\right)\)
\(f'\left(t\right)=2\sqrt{t^2+\frac{27}{4}}+\frac{2t^2}{\sqrt{t^2+\frac{27}{4}}}>0;\forall t>0\)
→ hàm đồng biến trên (0;+∞)
Mà \(f\left(3\left(x+\frac{1}{2}\right)\right)=f\left(y\right)\Leftrightarrow3\left(x+\frac{1}{2}\right)=y\)
Thế vào (2) ta được:
\(\left(6y+6\right)^2=24\sqrt{x}\left(6y-6\right)\Leftrightarrow\left(x+1\right)^2=4\sqrt{x}\left(x-1\right)\)
\(\Leftrightarrow\left(\sqrt{x}\right)^4-4\left(\sqrt{x}\right)^3+2\left(\sqrt{x}\right)^2+4\sqrt{x}+1=0\)
\(\Leftrightarrow\left(\sqrt{x}\right)^4+4\sqrt{x}+1-2\cdot x\cdot2\sqrt{x}-2\cdot x\cdot1+2\cdot1\cdot2\sqrt{x}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}-1\right)^2=0\)
\(\Leftrightarrow x-2\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1+\sqrt{2}\Leftrightarrow x=3+2\sqrt{2}\)
\(\Rightarrow y=\frac{21+12\sqrt{2}}{2}\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1,\(x^2-2y^2-xy=0\)
<=> \(\left(x-2y\right)\left(x+y\right)=0\)
<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)
Sau đó bạn thế vào PT dưới rồi tính
3. ĐKXĐ \(x\le1\); \(x+2y+3\ge0\)
.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)
<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)
<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)
Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\); \(x\le1\)nên \(-y^2+x+2y-4< 0\)
=> \(x=2y\)
Thế vào Pt còn lại ta được
\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)
<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)
<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)
<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )
Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)