Một vật được trượt từ đỉnh của mặt phẳng nghiêng có góc nghiêng 30độ, độ cao 10m. Đến chân mặt phẳng nghiêng nó tiếp tục chuyển động trên đường nằm ngang và đi được một đoạn đường s thì dừng lại. Hệ số ma sát trên cả 2 đường đi đều bằng 0,1. Tính s?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động. Vật chịu tác dụng của các lực f m s → ; N → ; P →
Theo định luật II newton ta có: f → m s + N → + P → = m a → 1
Chiếu Ox ta có :
P x − f m s = m a 1 ⇒ P sin α − μ N = m a 1
Chiếu Oy ta có: N = P y = P cos α
⇒ a 1 = g sin α − μ g cos α
⇒ a 1 = 10. 1 2 − 0 , 1.10. 3 2 = 4 , 134 m / s 2
Vận tốc của vật ở chân dốc.
Áp dụng công thức v 1 2 − v 0 2 = 2 a 1 s
⇒ v 1 = 2 a 1 s = 2.4 , 134.40 ≈ 18 , 6 m / s
b. Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có F → m s + N → + P → = m a → 2
Chiếu lên trục Ox: − F m s = m a 2 ⇒ − μ . N = m a 2 1
Chiếu lên trục Oy: N – P = 0 ⇒ N = P=mg
⇒ a 2 = − μ g = − 0 , 2.10 = − 2 m / s 2
Để vật dừng lại thì v 2 = 0 m / s
Áp dụng công thức:
v 2 2 − v 1 2 = 2 a 2 . s 2 ⇒ s 2 = − 18 , 6 2 2. − 2 = 86 , 5 m
Chọn đáp án D
Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động
Áp dụng định luật II Newton
Ta có
Chiếu lên trục Ox (1)
Chiếu lên trục Oy: N-P=0 suy ra N=P=mg
Áp dụng công thức
200g=0,2kg
các lực tác dụng lên vật khi ở trên mặt phẳng nghiêng
\(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\)
chiếu lên trục Ox có phương song song với mặt phẳng nghiêng, chiều dương cùng chiều chuyển động
P.sin\(\alpha\)=m.a\(\Rightarrow\)a=5m/s2
vận tốc vật khi xuống tới chân dốc
v2-v02=2as\(\Rightarrow\)v=\(4\sqrt{5}\)m/s
khi xuống chân dốc trượt trên mặt phẳng ngang xuất hiện ma sát
các lực tác dụng lên vật lúc này
\(\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a'}\)
chiếu lên trục Ox có phương nằm ngang chiều dương cùng chiều chuyển động của vật
-Fms=m.a'\(\Rightarrow-\mu.N=m.a'\) (1)
chiếu lên trục Oy có phương thẳng đứng chiều dương hướng lên trên
N=P=m.g (2)
từ (1),(2)\(\Rightarrow\)a'=-2m/s2
thời gian vật chuyển động trên mặt phẳng đến khi dừng lại là (v1=0)
t=\(\dfrac{v_1-v}{a'}\)=\(2\sqrt{5}s\)
góc tạo bởi mặt phẳng nghiêng và phương ngang
sin\(\alpha=\dfrac{h}{l}\Rightarrow\alpha=30^0\)
\(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\)
chiếu lên trục Ox phương song song mặt phẳng nghiêng, chiều dương cùng chiều chuyển động
sin\(\alpha\).P=m.a\(\Rightarrow\)a=5m/s2
thời gian vật đi hết dốc t=\(\sqrt{\dfrac{l}{2a}}\)=2s
b) khi đi hết dốc vận tốc của vật là v=v0+a.t=10m/s2
khi xuống dốc xuất hiện ma sát
\(\overrightarrow{F_{ms}}+\overrightarrow{N}+\overrightarrow{P}=m.\overrightarrow{a'}\)
chiếu lên trục Ox phương nằm ngang chiều dương cùng chiều chuyển động
-Fms=m.a' (1)
chiếu lên trục Oy phương thẳng đứng chiều dương hướng lên trên
N=P=m.g (2)
từ (1),(2)\(\Rightarrow\)a'=-5m/s2
thời gian vật chuyển động trên mặt phẳng đến khi dừng lại là (v1=0)
t=\(\dfrac{v_1-v}{a'}=2s\)
Chọn đáp án A
Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động. Vật chịu tác dụng của các lực
Theo định luật II newton ta có:
Chiếu Ox ta có :
Vận tốc của vật ở chân dốc.Áp dụng công thức
Khi chuyển động trên mặt phẳng ngang
Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có
Chiếu lên trục Ox
Để vật dừng lại thì
Chiếu lên trục Oy
Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động.
Vật chịu tác dụng của các lực N → ; P →
Theo định luật II newton ta có: N → + P → = m a → 1
Chiếu Ox ta có : P x = m a 1 ⇒ P sin α = m a 1
⇒ a 1 = g sin α = 10. 5 10 = 5 m / s 2
Vận tốc của vật ở chân dốc.
Áp dụng công thức v 1 2 − v 0 2 = 2 a 1 s
⇒ v 1 = 2 a 1 s = 2.5.10 = 10 m / s
Khi chuyển động trên mặt phẳng ngang: Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có F → m s + N → + P → = m a → 2
Chiếu lên trục Ox: − F m s = m a 2 ⇒ − μ . N = m a 2 1
Chiếu lên trục Oy: N – P = 0 ⇒ N = P=mg
⇒ a 2 = − μ g = − 0 , 1.10 = − 1 m / s 2
Để vật dừng lại thì v 2 = 0 m / s
Áp dụng công thức:
v 2 2 − v 1 2 = 2 a 2 . s 2 ⇒ s 2 = − 10 2 2. − 1 = 50 m
Và v 2 = v 1 + a 2 t ⇒ t = − 10 − 1 = 10 s
Chọn mốc thế năng tại chân mặt phẳng nghiêng.
a) Cơ năng tại đỉnh mặt phẳng nghiêng
\(W=mgh=mg.AB\sin 30^0=1,2.10.AB.\sin 30^0=24\)
\(\Rightarrow AB = 4(m)\)
b) Tại D động năng bằng 3 lần thế năng, ta có: \(W_đ=3W_t\Rightarrow W = 4W_t \Rightarrow W_t = 24: 4 = 6(J)\)
\(\Rightarrow mgh_1=mg.DB\sin 30^0=1,2.10.DB.\sin 30^0=6\)
\(\Rightarrow DB = 1(m)\)
c) Tại trung điểm mặt phẳng nghiêng
Thế năng: \(W_t = mgh_2=mg.\dfrac{AB}{2}\sin 30^0=1,2.10.2.\sin 30^0=12(J)\)
Động năng: \(W_đ=W-W_t=24-12=12(J)\)
\(\Rightarrow \dfrac{1}{2}.1,2.v^2=12\)
\(\Rightarrow 2\sqrt 5(m/s)\)
d) Công của lực ma sát trên mặt ngang: \(A_{ms}=\mu mg.S\)
Theo định lí động năng: \(W_{đ2}-W_{đ1}=-A_{ms}\Rightarrow 0-24=-\mu.1,2.10.1\Rightarrow \mu = 2\)
anh ơi , anh quên tính vận tốc của vật tại chân mặt phẳng nghiêng kìa . Đãng trí quá .
Chọn mốc thế năng tại chân mặt phẳng nghiêng
\(MN=\dfrac{10}{\sin 30^0}=20m\)
Lực ma sát trên mặt phẳng nghiêng: \(F_{ms1}=\mu mg\cos 30^0=0,1.mg.\dfrac{\sqrt 3}{2}\)
Lực ma sát trên mặt phẳng ngang: \(F_{ms2}=\mu.mg=0,1.mg\)
Cơ năng ban đầu: \(W=m.g.h=10.mg\)
Công của lực ma sát trong cả quá trình: \(A_{ms}=F_{ms1}.MN+F_{ms2}.NP=0,1.mg.\dfrac{\sqrt 3}{2}.20+0,1mg.S\)
Vật dừng lại khi cơ năng bằng 0.
Áp dụng độ giảm cơ năng bằng công của lực ma sát ta có:
\(W-0=A_{ms}\)
\(\Rightarrow 10.mg =0,1.mg.\dfrac{\sqrt 3}{2}.20+0,1mg.S\)
\(\Rightarrow 10 =\sqrt 3+0,1.S\Rightarrow S=82,68(m)\)
Tìm vBvB
Vật chuyển động trên mặt phẳng nghiêng :
P→P→ + N→N→ + f→msf→ms = ma→ma→ (11)
ch(11) / Oy : −Pcosα+N=0−Pcosα+N=0
⇒fms=μPcosα⇒fms=μPcosα
ch(11) /Ox : Psinα−fms=maPsinα−fms=ma
aa = Psinα−μPcosαmPsinα−μPcosαm
=(sinα−μcosα)g=3,43(m/s2).=(sinα−μcosα)g=3,43(m/s2).
vBvB = 2al−−−√2al ≈8,3≈8,3 (m).
b) Tìm tt.
Vật chuyển động trên mặt ngang :
P→P→ + N→1N→1 + f′→msf′→ms = ma→ma→
Theo trục nằm ngang :
f′ms=μN1=μmgfms′=μN1=μmg
a1a1 = −f′msm=−μg−fms′m=−μg
a1=1,7(m/s2)a1=1,7(m/s2).
v=a1t+vB=0v=a1t+vB=0 ⇒t⇒t = −vBa1=4,9(s)−vBa1=4,9(s).