OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho: A= 1/2.17 + 1/3.18 + 1/4.19 +...+ 1/1990.2005.
B= 1/2.1991 + 1/3.1992 +...+ 1/16.2005. Chứng minh: A/B = 663/5.
GIÚP MK VỚI CÁC BẠN ƠI ĐANG CẦN GẤP
A=\(\frac{1}{15}\left(\frac{1}{2}-\frac{1}{17}+\frac{1}{3}-\frac{1}{18}+...+\frac{1}{1990}-\frac{1}{2005}\right)\)
=\(\frac{1}{15}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1990}-\frac{1}{17}-\frac{1}{18}-...-\frac{1}{2005}\right)\)
=\(\frac{1}{15}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1990}-\frac{1}{17}-\frac{1}{18}-...-\frac{1}{1990}-...-\frac{1}{2005}\right)\)
=\(\frac{1}{15}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}-\frac{1}{1991}-\frac{1}{1992}-...-\frac{1}{2005}\right)\)
B=\(\frac{1}{1989}\left(\frac{1}{2}-\frac{1}{1991}+\frac{1}{3}-\frac{1}{1992}+...+\frac{1}{16}-\frac{1}{2005}\right)\)
=\(\frac{1}{1989}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}-\frac{1}{1991}-\frac{1}{1992}-...-\frac{1}{2005}\right)\)
2 dấu ngoặc của A và B là như nhau
Vậy A/B=1/15:1/1989=1/15.1989=663/5 ( đpcm, tức là điều phải chứng minh)
Cho :
A = \(\dfrac{1}{2.17}+\dfrac{1}{3.18}+\dfrac{1}{4.19}+...+\dfrac{1}{1990.2005}\)
B = \(\dfrac{1}{2.1991}+\dfrac{1}{3.1992}+\dfrac{1}{4.1993}+...+\dfrac{1}{16.2005}\)
Chứng minh : \(\dfrac{A}{B}=\dfrac{663}{5}\)
Cho 2 biểu thức sau
\(A=\frac{1}{2.17}+\frac{1}{3.18}+\frac{1}{4.19}+...+\frac{1}{1900.2005}\)
\(B=\frac{1}{2.1991}+\frac{1}{3.1992}+\frac{1}{4.1993}+....+\frac{1}{16.2005}\)
Chứng minh \(\frac{A}{B}=\frac{663}{5}\)
cho A= 1/2.17 + 1/3.18 + 1/4.19 +.....+ 1/1900.2005
B= 1/2.1991 + 1/3.1992 + 1/4.1993 +....+ 1/16.2005
Tính A/B
S1 = 3/1 + 3/1+2 + 3/1+2+3 +...+3/1+2+3+...+100
S2 = 1/1.2.3 + 31/2.3.4 +...+1/1988.1999.2000
S3= 1/2.17 + 1/3.18 +1/4.19 +...+1/1990.2005
S1=1/2.1991+1/3.1992+...+1/16.2005
Chứng minh rằng : S3/S4=663/5
S4 đi đâu rồi?????
Cho A=1/2.17+1/3.18+...+1/1990.2005. B=1/2.1991+1/2.1992+....+1/16.2005. CM A/B=663/5. (Lưu ý bài này cô mình tự nghĩ thì phải chứ tra mạng ko ra. Nghĩ giúp mình với nhé rồi mink cho nhiều tích nhé.????)
Tính \(\dfrac{A}{B}\) biết:
\(A=\dfrac{1}{2.17}+\dfrac{1}{3.18}+\dfrac{1}{4.19}+...+\dfrac{1}{1900.2005}\) \(\&\) \(B=\dfrac{1}{2.1991}+\dfrac{1}{3.1992}+\dfrac{1}{4.1993}+...+\dfrac{1}{16.2005}\)
Làm giúp mk zới thứ 6 thi zùi
bài 1 a) cho a;b là các số nguyên thỏa mãn (a2 +b2) chia hết cho 3 . chứng minh rằng a và b cùng chia hết cho3
b)cho A = 7^n +3n -1 và B= 7^n+1 +3(n+1) -1 ( n thuộc N). chứng minh rằng A chia hết cho 9 khi B chia hết cho 9 và ngược lại
c) cho hai biểu thức :A=\(\frac{1}{2.17}+\frac{1}{3.18}+\frac{1}{4.19}+....+\frac{1}{1900.2005}\) ;;;B=\(\frac{1}{2.1991}+\frac{1}{3.1992}+\frac{1}{4.1993}+....+\frac{1}{16.2005}\)
.Chứng minh rằng :\(\frac{A}{B}=\frac{663}{5}\)
d)tìm số tự nhiên x,y,z sao cho x nhỏ nhất thỏa mãn : 7x2-9y2+29=0 và 9y2-11z2-25=0
Tính 1/2.17+1/3.18+1/4.19+...+1/1990.2005
A=\(\frac{1}{15}\left(\frac{1}{2}-\frac{1}{17}+\frac{1}{3}-\frac{1}{18}+...+\frac{1}{1990}-\frac{1}{2005}\right)\)
=\(\frac{1}{15}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1990}-\frac{1}{17}-\frac{1}{18}-...-\frac{1}{2005}\right)\)
=\(\frac{1}{15}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1990}-\frac{1}{17}-\frac{1}{18}-...-\frac{1}{1990}-...-\frac{1}{2005}\right)\)
=\(\frac{1}{15}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}-\frac{1}{1991}-\frac{1}{1992}-...-\frac{1}{2005}\right)\)
B=\(\frac{1}{1989}\left(\frac{1}{2}-\frac{1}{1991}+\frac{1}{3}-\frac{1}{1992}+...+\frac{1}{16}-\frac{1}{2005}\right)\)
=\(\frac{1}{1989}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}-\frac{1}{1991}-\frac{1}{1992}-...-\frac{1}{2005}\right)\)
2 dấu ngoặc của A và B là như nhau
Vậy A/B=1/15:1/1989=1/15.1989=663/5 ( đpcm, tức là điều phải chứng minh)