Ở mặt thoáng của một chất lỏng có hai nguồn kết hợp A và B cách nhau 20(cm) dao động theo phương thẳng đứng với phương trình uA=2cos(40πt)(mm) và uB=2cos(40πt+π)(mm). Biết tốc độ truyền sóng trên mặt chất lỏng là 30 cm/s. Xét hình vuông ABCD thuộc mặt chất lỏng. Số điểm dao động với biên độ cực đại trên đoạn AD là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:
d 1 - d 2 = ( k + 1 2 ) λ
+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số d1 – d2:
AM - 2 AM ≤ d 1 - d 2 ≤ AB
+ Kết hợp hai phương trình trên ta thu được:
AM ( 1 - 2 ) λ - 1 2 ≤ k ≤ A B λ - 1 2
→ - 6 , 02 ≤ k ≤ 12 , 8
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.
Đáp án B
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:
d 1 - d 2 = k + 1 2 λ
+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số d 1 - d 2 : A M - 2 A M ≤ d 1 - d 2 ≤ A B
+ Kết hợp hai phương trình trên ta thu được: A M 1 - 2 λ - 1 2 ≤ k ≤ A B λ - 1 2
→ - 6 , 02 ≤ k ≤ 12 , 8
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM
<Em ko bt có đề là như thế hay là mình chép lộn không nhưng đây là cách làm tìm "Số điểm dao động với biên độ cực đại trên đoạn BM " Chị tham thảo nha.>
THAM THẢO
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì
\(d_1-d_2=\left(k+\dfrac{1}{2}\right)\lambda\)
+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số
\(\dfrac{d_1-d_2}{AM-\sqrt{2}AM}\le d_1-d_2\le AB\)
+ Kết hợp hai phương trình trên ta thu được
\(\dfrac{\left(k+\dfrac{1}{2}\right)\lambda}{AM-\sqrt{2}AM}\le\left(k+\dfrac{1}{2}\right)\lambda\le AB\)
\(\Leftrightarrow\dfrac{AM\left(1-\sqrt{2}\right)}{\lambda}-\dfrac{1}{2}\le k\le\dfrac{AB}{\lambda}-\dfrac{1}{2}\)
\(\Rightarrow-6,02\le k\le12,8\)
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.
Chọn C
+ Bước sóng của sóng λ = v 2 π ω = 3 , 5 c m
Số cực tiểu giao thoa trên đoạn thẳng nối hai nguồn ngược pha:
- A B λ ≤ k ≤ A B λ ⇔ - 5 , 7 ≤ k ≤ 5 , 7
Vậy có 11 điểm
- Bước sóng của sóng:
- Số cực tiểu giao thoa trên đoạn thẳng nối hai nguồn ngược pha:
- Vậy có 11 điểm
Đáp án C
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì
d 1 - d 2 = ( k + 1 2 ) λ
+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số
+ Kết hợp hai phương trình trên ta thu được
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM
Đáp án C
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì: d 1 - d 2 = k + 1 2 λ
+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số d 1 - d 2 : A M - 2 A M ≤ d 1 - d 2 ≤ A B
+ Kết hợp hai phương trình trên ta thu được
A M 1 - 2 λ - 1 2 ≤ k ≤ A B λ - 1 2
→ - 6 , 02 ≤ k ≤ 12 , 8
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.
Đáp án C
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:
d 1 - d 2 = ( k + 1 2 ) λ
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.
Chọn đáp án A
Hai nguồn kết hợp ngược pha d 1 − d 2 = m λ d 1 − d 2 = k − 0 , 5 λ
Cực đại thuộc BM:
d 1 − d 2 = k + 0 , 5 λ = k + 0 , 5 1 , 5 M A − M B ≤ d 1 − d 2 < B A − B B ⇒ − 8 , 3 ≤ k + 0 , 5 1 , 5 < 20
⇒ − 6 , 03 ≤ k < 12 , 8 ⇒ k = − 6 , − 5 , − 4 , ... , 12
Vậy có 19 giá trị của k
$\lambda = \dfrac{3}{2}$
Vị trí cực đại thoả mãn: $(20-20\sqrt {2} \le (k+0,5)\lambda \le 20 \Rightarrow $ số $k=19$
Vậy có 19 điểm dao động biên độ cực đại trên đoạn AD.