K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

\(A=\frac{2006-x}{6-x}=\frac{6+2000-x}{6-x}=\frac{\left(6-x\right)+2000}{6-x}=\frac{6-x}{6-x}+\frac{2000}{6-x}=1+\frac{2000}{6-x}\)

A lớn nhất <=> \(\frac{2000}{6-x}\) lớn nhất <=> 6-x > 0 và nhỏ nhất <=>6-x=1<=>x=5

Thay x=5 vào A,ta đc:

\(A=1+\frac{2000}{6-5}=1+2000=2001\)

Vậy tại x=5 thì A có GTLN là 2001

17 tháng 5 2016

\(A=\frac{2006-x}{6-x}=\frac{6+2000-x}{6-x}=\frac{\left(6-x\right)+2000}{6-x}=1+\frac{2000}{6-x}\)

A lớn nhất=>\(\frac{2000}{6-x}\)lớn nhất=>6-x nhỏ nhất=>x lớn nhất

TH1:6-x<0=>x>6=>ko có giá trị x lớn nhất thỏa mãn x>6

TH2:6-x>0=>x<6=>x=5

Vậy x=5 thì GTLN của \(A=\frac{2006-5}{6-5}=\frac{2001}{1}=2001\)

15 tháng 2 2017

\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)

Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN

Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5

Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5

15 tháng 2 2017

x=5;A=2001

tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu

10 tháng 8 2016

\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)

=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6

A lớn nhất khi 6-x nên => 6-x=1

=> x=5

giá trị lớn nhất của A khi đó là:

A=(2006-5)/(6-5)=2001

10 tháng 8 2016

\(A=\frac{6-x+2000}{6-x}=1+\frac{2000}{6-x}\)

A đạt GTLN \(\frac{2000}{6-x}\)đạt GTLN

\(\frac{2000}{6-x}\)đạt GTLN 6x đạt GTNN 

Ta có  6x1

Dấu = xảy ra x=5⇔x=5

Do đó GTLN của A \(=1+\frac{2000}{1}=2000+1=2001\)

Vậy GTLN của A là 2001 x=5

10 tháng 8 2016

\(A=\frac{2000+6-x}{6-x}=1+\frac{2000}{6-x}\)

A đạt GTLN \(\Leftrightarrow\frac{2000}{6-x}\)đạt GTLN

\(\frac{2000}{6-x}\)đạt GTLN \(\Leftrightarrow6-x\) đạt GTNN 

Ta có  \(6-x\ge1\)

Dấu = xảy ra \(\Leftrightarrow x=5\)

Do đó GTLN của A \(=1+\frac{2000}{1}=2001\)

Vậy GTLN của A là 2001 \(\Leftrightarrow x=5\)

5 tháng 1 2020
Điều kiện:x khác 6 Đạt GTLN tại x=5=>A=2007 Ngược lại:GTNN tại x=7=>A=-2005 GTLN và GTNN xảy ra tại 2 biên cuả điều kiện
28 tháng 3 2016

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

\(A=\frac{2006-x}{6-x}=\frac{2000+6-x}{6-x}=\frac{2000}{6-x}+1\)

vì A lớn nhất=>\(\frac{2000}{6-x}\)lớn nhất

=>6-x nhỏ nhất

=>6-x=1

=>x=5

vậy MinA=\(\frac{2006-5}{6-5}=\frac{2001}{1}=2001\)khi x=5

18 tháng 2 2017

hình như bạn đấy sai MinA\(\Rightarrow\)MaxA

22 tháng 2 2018

Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0

\(\Rightarrow4-x=1\rightarrow x=3\)

thay vào ta đc A=3

B3

\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)

Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )

Vậy gtln của 3/4-x là 3 thay vào ta đc b=4

Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)

22 tháng 2 2018

B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)

VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}

\(\Rightarrow\)x={0;-1;23}