K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

mình cũg đâu bao giờ đc đâu đành chịu thôi 

22 tháng 5 2016

mik cx z suốt ngày bị bố mẹ so sánh vs con nhà người ta

25 tháng 5 2016

ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)

kết hợp với giả thiết ta có diện tích ADF bằng BCF

hay d(A,DF).DF.1/2=d(B,CF).CF.1/2

hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC 

vậy => đpcm

24 tháng 5 2016

ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)

kết hợp với giả thiết ta có diện tích ADF bằng BCF

hay d(A,DF).DF.1/2=d(B,CF).CF.1/2

hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC 

vậy => đpcm

23 tháng 5 2016

các câu hỏi trên online math bạn tự tìm hiểu 

 

22 tháng 5 2016

mình rất muốn nhưng mình không biết 

mình là trần thị lâm hiền ở onlinemath đây mà

22 tháng 5 2016

khá dễ

 

23 tháng 12 2015

làm ơn làm phước tick mình lên 60 với

25 tháng 1 2016

bai nà lấy ở đâu vậy

 

a: Xét tứ giác AEFC có 

D là trung điểm của FA

D là trung điểm của CE

Do đó: AEFC là hình bình hành

mà AF\(\perp\)EC

nên AEFC là hình thoi

b: Ta có: AEFC là hình thoi

nên AC=FE

mà AC=BD

nên FE=BD

mình cảm ơn cậu nhiều nha.

 

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông