Chứng tỏ rằng đa thức x2+4x+7 không có nghiệm
Giúp mink vs!!!Cảm ơn các pạn nhiều!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
`a) A(x) + M(x) = B(x)`
`->( 2x^2 - 5 + 9x ) + M(x) = ( 3x^2 + 9x - 1 )`
`-> M(x) = ( 3x^2 + 9x - 1 ) - ( 2x^2 - 5 + 9x )`
`-> M(x) = 3x^2 + 9x - 1 - 2x^2 + 5 - 9x`
`-> M(x) = x^2 + 4`
__________________________________
`b)` Cho `M(x) = 0`
`-> x^2 + 4 = 0`
`-> x^2 = -4` (Vô lí vì `x^2 >= 0` mà `-4 < 0`)
Vậy đa thức `M(x)` không có nghiệm
a, ta có A(x) + M(x)= B(x)
=> M(x)= B(x) - A(x)= (3x2+9x-1) -(2x2-5+9x)
= 3x2+9x-1 -2x2 +5 -9x
= (3x2-2x2) +( 9x-9x)+(5-1)
= x2 +4
b, Ta có x2> hoặc bằng 0 => x2+4 >0
p(x)=0 q(x)=0 x^2+4x+10=0 x^2+x+1=0 x^2+2x+2x+4+6=0 x^2+1/2x+1/2x+1/4+3/4=0 x(x+2)+2(x+2)=-6 x(x+1/2)+1/2(x+1/2)+3/4=0 (x+2)(x+2) =-6 (x+1/2)(x+1/2) = -3/4 (x+2)^2 = -6 ( vô lí )
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
\(x^2+4x+7\)
\(=x^2+2x+2x+4+3\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+3\)
\(=\left(x+2\right).\left(x+2\right)+3\)
\(=\left(x+2\right)^2+3\ge3\)
Vậy đa thức vô nghiệm.
\(x^2+4x+7\)
\(=x^2+2x+2x+4+3\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+3\)
\(=\left(x+2\right).\left(x+2\right)+3\)
\(=\left(x+2\right)^2+3\ge3\)