Tìm các số x và y thuộc N biết:
a) 2x+1 . 5y = 20x
b) 15x : 3y = 75y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$
$2x=10$
$x=5$
$\Rightarrow y=x=5$
Vậy $(x,y)=(5,5)$
b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$
$5x=180$
$x=36$
$y=x=36$
Vậy $(x,y)=(36,36)$
c. Thay $y=2x$ vào điều kiện đầu thì:
$3x+5.2x=13$
$13x=13$
$x=1$
$y=2x=2$
Vậy $(x,y)=(1,2)$
a) Ta có: x=y
mà x+y=10
nên \(x=y=\dfrac{10}{2}=5\)
b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{-3}{4}\)
⇒\(\dfrac{x}{-3}=\dfrac{y}{4}\)
⇒\(\dfrac{2x}{-6}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{-6}=\dfrac{3y}{12}=\dfrac{3y-2x}{12-\left(-6\right)}=\dfrac{36}{18}=2\)
⇒\(\left\{{}\begin{matrix}x=2.-3=-6\\y=2.4=8\end{matrix}\right.\)
a) Ta có: \(3x-y=13\) và \(2x-4y=60\)
Mà: \(2\left(x+2y\right)=60\Rightarrow x+2y=30\) (1)
Và: \(3x-y=13\Rightarrow6x-2y=26\) (2)
Cộng (1) với (2) theo vế ta có:
\(\left(x+6x\right)+\left(-2y+2y\right)=30+26\)
\(\Rightarrow7x=56\)
\(\Rightarrow x=8\)
Ta tìm được y:
\(8+2y=30\)
\(\Rightarrow2y=22\)
\(\Rightarrow y=11\)
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Lời giải:
a. Với $x,y$ là số tự nhiên thì $15x+20y=5(3x+4y)\vdots 5$. Mà $2001\not\vdots 5$ nên $15x+20y\neq 2001$
Vậy không tồn tại $x,y$ tự nhiên thỏa mãn điều kiện đề.
b.
$3y^2=62-2x^2\vdots 2\Rightarrow y\vdots 2$.
$\Rightarrow y=2y_1$ với $y_1\in\mathbb{N}$
Khi đó:
$2x^2+3(2y_1)^2=62$
$\Rightarrow x^2+6y_1^2=31$
$\Rightarrow 6y_1^2=31-x^2\leq 31$
$\Rightarrow y_1^2\leq \frac{31}{6}< 9$
$\Rightarrow -3< y_1< 3$
Mà $y_1$ là số tự nhiên nên $y_1$ có thể nhận các giá trị $0,1,2$
Nếu $y_1=0$ thì $x^2=31-6.0^2=31$ (loại do 31 không phải scp)
Nếu $y_1=1$ thì $x^2=31-6.1^2=25\Rightarrow x=5$
$\Rightarrow (x,y)=(5,2)$
Nếu $y_1=2$ thì $x_2^2=31-6.2^2=7$ (loại do 7 không phải scp)
Vậy........
\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)
\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)
Ta có:
\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)
Đẳng thức xảy ra khi và chỉ khi:
\(x^2=y^2+5=z\)
Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)
\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)
Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:
\(\left(x;y;z\right)=\left(3;2;9\right)\)
a)(x+1)(y-2)=3
x+1;y-2 thuộc Ư(3){1;-1;3;-3}
ta có bảng sau :
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
y-2 | 1 | -1 | 3 | -3 |
y | 3 | 1 | 5 | -1 |
vậy cặp x;y thuộc {(2;3);(0;1);(4;5);(-2;-1)}
a) 2x+1 . 5y =( 22 . 5)x
=> 2x+1 .5y = 22x .5x
=> 2x+1=22x và 5y= 5x
=>x+1=2x=>x=1
với 5y =5x => y=x
vậy x=y=1
b)15x : 3y =75y
=> (3.5)x :3y = (3.52)y (*)
=> 3x-y .5x = 3y. 52y
=> 3x-y= 3y và 5x=52y
=>x-y= y => x=2y
với 5x= 52y
=> x=2y.
vậy nếu ta chọn y=1 thì x=2
kết luận y=1 x=2