GIẢI BẰNG TỰ LUẬN GIÚP MÌNH Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`sin3x sinx+sin(x-π/3) cos (x-π/6)=0`
`<=> 1/2 (cos2x - cos4x) + 1/2(-sin π/6 + sin (2x-π/2)=0`
`<=> cos2x-cos4x-1/2+ sin(2x-π/2)=0`
`<=>cos2x-cos4x-1/2+ sin2x .cos π/2 - cos2x. sinπ/2=0`
`<=> cos2x - cos4x - cos2x = 1/2`
`<=> cos4x = cos(2π)/3`
`<=>` \(\left[{}\begin{matrix}4x=\dfrac{2\text{π}}{3}+k2\text{π}\\4x=\dfrac{-2\text{π}}{3}+k2\text{π}\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}x=\dfrac{\text{π}}{6}+k\dfrac{\text{π}}{2}\\x=-\dfrac{\text{π}}{6}+k\dfrac{\text{π}}{2}\end{matrix}\right.\)
4:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hcn
=>ΔACD vuông tại C
b: Xét ΔKAB vuông tại A và ΔKCD vuông tại C có
KA=KC
AB=CD
=>ΔKAB=ΔKCD
=>KB=KD
c: Xét ΔACD có
DK,CM là trung tuyến
DK cắt CM tại I
=>I là trọng tâm
=>KI=1/3KD
Xét ΔCAB có
AM,BK là trung tuyến
AM cắt BK tại N
=>N là trọng tâm
=>KN=1/3KB=KI
Câu 5:
$\frac{20}{\sqrt{5}}=\frac{20\sqrt{5}}{5}=4\sqrt{5}$
Câu 6:
\(\frac{3}{\sqrt{5}+\sqrt{2}}+\frac{3}{\sqrt{5}-\sqrt{2}}=3.\frac{\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}=3.\frac{2\sqrt{5}}{5-2}=2\sqrt{5}\)
Câu 7:
1. ĐKXĐ: $x\neq 1; x\geq 0$
\(A=\left[\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}+1}+1\right]:\left[\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}-1}-1\right]=(\sqrt{x}+1):(\sqrt{x}-1)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
2.
\(A< 1\Leftrightarrow \frac{\sqrt{x}+1}{\sqrt{x}-1}-1<0\Leftrightarrow \frac{2}{\sqrt{x}-1}<0\)
\(\Leftrightarrow \sqrt{x}-1<0\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ suy ra $0\leq x< 1$
Chọn B
lm tự luận mà bạn