K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra

b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)

  \(\frac{ab}{c}+\frac{ac}{b}\ge2a\)

   \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng 2 vế của bất đẳng thức ta được :

\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)

=> bất đẳng thức cần chứng minh

8 tháng 6 2016

a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi

Giả sử  \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)

=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)

=>\(\left(a+b\right)\left(a+b\right)\) > 4ab

=>\(\left(a+b\right)^2-4ab\) > 0

=>\(a^2+2ab+b^2-4ab\) > 0

=>\(a^2-2ab+b^2\) > 0

=>\(\left(a-b\right)^2\) > 0

BĐT cuối luôn đúng với mọi a;b

=>điều giả sử là đúng,ta có đpcm

(*)đề sai nên Kiệt ko ra là phải

 

8 tháng 6 2016

a) đề sai à bạn 4/a+b chứ

8 tháng 6 2016

b)Theo BĐT Côsi:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)

Tương tự ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm. 

Đẳng thức xảy ra khi a = b = c

21 tháng 3 2022

a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow\)a^2+2ab+b^2>=4ab

\(\Leftrightarrow\)a^2-2ab+b^2>=0

\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)

21 tháng 3 2022

b,\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\) 

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng

19 tháng 7 2017

Từ \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)và \(\hept{\begin{cases}b\ge b^2\\c\ge c^3\\abc\ge0\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Rightarrow a+b+c-\left(ab+bc+ca\right)+abc\le1\)

\(\Rightarrow a+b^2+c^3-\left(ab+bc+ca\right)\le1\)

26 tháng 4 2022

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

26 tháng 4 2022

-Thôi, mình chịu rồi. Mình dùng tất cả các BĐT như Caushy, Schwarz, Caushy 3 số... nhưng không ra.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
Áp dụng BĐT AM-GM:

$\text{VT}=\sqrt{ab+c(a+b+c)}+\sqrt{bc+a(a+b+c)}+\sqrt{ca+b(a+b+c)}$

$=\sqrt{(c+a)(c+b)}+\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}$
$\leq \frac{c+a+c+b}{2}+\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}$

$=2(a+b+c)=2$
Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

10 tháng 8 2023

tử vế phải là 3 hay 2 vậy bạn.

18 tháng 4 2016

tìm so nguyên tố p và các số dương x y sao cho 

p-1=2x(x+2)

p^2-1=2y(y+2)