bài 1)cho tam giác vuông ABC,góc A=90,AH là đường cao, vẽ HK vuông góc với AB (K thuộc AB)CM
a)AB.AK=HB.HC
b)HB^2/AC^2 = HB/HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác AKH vuông tại K và tam giác AHB vuông tại H có
góc KAH =góc HAB
=> tam giác AKH đồng dạng tam giác AHB (g-g)
=> AK/AH=AH/AB
=> AH^2=AK.AB (1)
tam giác ABC vuông tại A=> AH^2=BH.CH (hệ thức lượng tam giác vuông )
(1),(2)=> AK.AB=BH.CH (đpcm)
b) đề sai bn nhé phải là cm AB^2/AC^2=HB/HC
ta có AB^2=BH.BC (hệ thức lượng tam giác vuông )
ta có AC^2=HC.BC (hệ thức lượng tam giác vuông )
=> \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\left(đpcm\right)\)
a)
Liên tiếp áp dụng HTL, ta có: \(\hept{\begin{cases}AB.AK=AH^2\\HB.HC=AH^2\end{cases}}\)
=> \(AB.AK=HB.HC\)
=> TA CÓ ĐPCM.
b) LIÊN TIẾP ÁP DỤNG HTL TA ĐƯỢC:
\(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.CB\end{cases}}\)
CÓ: \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.CB}=\frac{HB}{HC}\)
VẬY TA CÓ ĐPCM.
1a) A=D=E=90 độ
=>AEHD là hcn
=>AH=DE
b)Xét tam giác DBH vuông tại D có:
DI là đường trung tuyến ứng với cạnh huyền BH
=>DI=BH/2=IH
=>tam giác IDH cân tại I
=>góc IDH=góc IHD (1)
Gọi O là gđ 2 đường chéo AH và DE
=>OD=OA=OE=OH (tự c/m)
=> tam giác DOH cân tại O
=> góc ODH=góc OHD(2)
từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)
=>IDvuông góc DE(3)
Cmtt ta được: KEvuông góc DE(4)
Từ (3)và (4) => DI//KE.
2a) Ta có góc HAB+góc HAC=90 độ (1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến ứng vs cạnh huyền BC
=>AM=MC
=>tam giác AMC cân
=>góc MAC=góc ACM
Lại có: góc HAC+góc ACH=90 độ(2)
Từ (1) và (2) => góc BAH=góc ACM
Mà góc AMC=góc MAC(cmt)
=>ABH=MAC(3)
b)A=D=E=90 độ
=>AFHE là hcn
Gọi O là gđ EF và AM
OA=OF(tự cm đi nha)
=>tam giác OAF cân
=>OAF=OFA(4)
Ta có : OAF+MCA=90 độ(5)
Từ (3)(4) và (5)
=>MAC+OFA=90 độ
Hay AM vuông góc EF
k giùm mình nha.
a, Xét tam giác ABH vuông tại H, đường cao HG
Ta có : \(NH^2=AB.BG\)( hệ thức lượng )
b, Xét tam giác AHC vuông tại H, đường cao HK
Ta có : \(AH^2=AK.AC\)( hệ thức lượng ) (1)
Xét tam giác ABC vuông tại A, đường cao AH
Ta có : \(AH^2=HB.HC\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AK.AC=HB.HC\Rightarrow\frac{AC}{HC}=\frac{HB}{AK}\)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
a) ta có theo công thức lượng giác :
xét trong tam giác vuông AHB ta có AK.AB=AH2
mặt khác trong tam giác vuông ABC có : AH2=HC.HB
=> AK.AB=HB.HC (=AH2)