K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2014

Mua sách luyện olympic về hỏi cô jao nha,....

dk: x<=5/2

BPT <=> 5-2x <= 16

             2x>=-11

               x>=-11/2

=> x từ -11/2 đến 5/2 là : -5;-4;-3;-2;-1;0;1;2

16 tháng 10 2014

Sach luyện thi Olympic mua o dau ban sao minh kiếm ko co

15 tháng 9 2014

5

OLYMPIC thì phải....

29 tháng 12 2014

5 vì căn bậc hai của 4 = 2 mà căn bậc hai cua 5 =2,236  (làm tròn)

16 tháng 11 2021

sao tôi toàn gặp 2015 thế nhỉ

16 tháng 11 2021

Cái này bộ ba pytago nên bạn chỉ cần cm x=2 là đc

Trường hợp 1: m=0

=>-3<0(luôn đúng)

=>Nhận

Trường hợp 2: m<>0

\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)

Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)

Vậy: -3<m<=0

24 tháng 2 2020

Ta có:

(1) ⇔ 2x2 + x - 10 = 11 ⇔ 2x2 + x - 21 = 0 ⇔ 2x2 - 7x + 6x - 21 = 0

⇔ x(2x - 7) + 3(2x - 7) = 0 ⇔ (2x - 7)(x + 3) = 0

\(\text{⇔}\left[{}\begin{matrix}2x-7=0\\x+3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\frac{7}{2}\\x=-3\end{matrix}\right.\)

Vậy trong các số 1; -1 ; 2 ; -2 ; \(\frac{5}{2};-\frac{5}{2}\) thì không có số nào là nghiệm của phương trình (1)

24 tháng 2 2020

Tương tự, ta có:

(2) ⇔ 2x2 - 3x - 5 = -3 ⇔ 2x2 - 3x - 2 = 0 ⇔ 2x2 - 4x + x - 2 = 0

⇔ 2x(x - 2) + (x - 2) = 0 ⇔ (x - 2)(2x + 1) = 0

\(\text{⇔}\left[{}\begin{matrix}x-2=0\\2x+1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy trong các số trên thì 2 là nghiệm của phương trình.

Trong bài này còn cách là thay từng số vào phương trình, nhưng cách này hơi lâu.

Chúc bạn học tốt@@

28 tháng 2 2017

Thay x=1 vào phương trình ta có:

\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)

\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)

TH1: \(a=\dfrac{2}{3}\)

\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)

TH2:a=1

\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)

28 tháng 2 2017

ha ha kiểm tra 45' của tôi nek

17 tháng 4 2016

2*(2xy + x + y) = 2*83
=> 4xy + 2x + 2y = 166
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1)
=> (2x + 1)(2y + 1) = 167
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z)
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167)

kẻ bảng ra

28 tháng 10 2015

ai tích cho mình mình tích lại cho!

16 tháng 11 2021

\( 2x^2+4x=19-3y^2\)

<=>\(2(x^2+2x)=19-3y^2\)

\(<=> x^2+2x=19-3y^2/2\)

Vì x^2+2x thuộc Z

\(=>19-3y^2/2\) thuộc Z

Ta có:

\(19-3y^2/2=(21-3y^2-2)/2=3(7-y^2)/2 -1\)

Vì (3,2)=1

\(=>7-y^2 \) chia hết cho 2

Đặt \(7-y^2=2t\)(t thuộc Z)

\(=>y^2=7-2t\) (1)

Lại có:

\(x^2+2x=19-3y^2/2=3(7-y^2)/2 -1\)

\(<=>(x+1)^2=3(7-y^2)/2 >=0\)

 \(=>y^2≤ 7\) 

\(=>7-2t≤7\)

\(=>t>=0\)(2)

Từ (1),ta có:

\(7-2t>=0\)

\(<=>t≤7/2\)(3)

Từ (2) và (3)

\(=>t=0,1,2,3\)

Thay vào (1) sẽ tìm được y và từ đó tìm đc x thôi