K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

22 tháng 6 2016

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

9 tháng 8 2020

câu 1 đề đúng nha bn

còn đề câu 2 là chia hết cho 45

9 tháng 8 2020

Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !

21 tháng 9 2017

1) \(55^{n+1}-55^n\) \(= 55^n . 55 - 55^n\)

\(= 55^n(55-1)\)

\(= 55^n . 54\)

\(= 55^n - 54 : 54\)

\(= 55^n\)

21 tháng 9 2017

1 ta co 55n+1 - 55n = 55n(55-1)=55n .54 vi 54 chia het cho 54 => 55n.54 chia het cho 54

=> 55^n+1 -55^n chia het cho 4

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

NM
22 tháng 7 2021

ta có

\(2n^2\left(n+1\right)-2n^2\left(n^2+n-3\right)=2n^2\left(4-n^2\right)=2n^2\left(2-n\right)\left(2+n\right)\)

nhận thấy \(n-2,n,n+2\)là ba số chẵn liên tiếp hoặc 3 số lẻ liên tiếp

do đó tích \(n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 3 với mọi n}\)

hay \(2n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 6 với mọi n}\)

15 tháng 9 2016

a) n3 - n

= n.(n2 - 1)

= n.(n - 1).(n + 1)

Vì n.(n - 1).(n + 1) là tích 3 số nguyên liên tiếp 

=> n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2;3)=1 => n.(n - 1).(n + 1) chia hết cho 6

=> n3 - n chia hết cho 6 (đpcm)

b) 55n+1 - 55n 

= 55n.55 - 55n 

= 55n.(55 - 1)

= 55n.54 chia hết cho 54 (đpcm)

25 tháng 6 2019

a)

\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)

b)

\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)

c)

\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)

15 tháng 12 2018

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

15 tháng 12 2018

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.