Bài 1 : Cho hình chữ nhật ABCD có AB = 8cm , BC = 6cm . Qua D kẻ đường thẳng m vuông góc DB , đường thẳng m cắt tia BC tại E . Kẻ CH vuông góc DE tại H
a, Chứng minh △BDE đồng dạng △DCE
b, Chứng minh DC2 = CH . DB
c, Gọi giao điểm hai đường chéo của hình chữ nhật ABCD là O . Hai đường OE và HC cắt nhau tại I . Chứng minh I là trung điểm HC và S△BCH / S△EBD .
d, Chứng minh 3 đường thẳng OE , DC , BH đồng quy .
CÁC BẠN GIÚP MÌNH VỚI Ạ =((((((((((((((((((((
a) Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
\(\widehat{DEC}\) chung
Do đó: ΔBDE\(\sim\)ΔDCE(g-g)
b) Xét ΔBCD vuông tại C và ΔDHC vuông tại H có
\(\widehat{BDC}=\widehat{DCH}\)(hai góc so le trong, BD//CH)
Do đó: ΔBCD\(\sim\)ΔDHC(g-g)
Suy ra: \(\dfrac{DC}{CH}=\dfrac{BD}{CD}\)
hay \(CD^2=CH\cdot BD\)