K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

1a) a2 - 2a + 6b +b2=-10 
<=> (a-1)2 +(b+3)2 =0 
TA CÓ VẾ TRÁI LUÔN \(\ge\)0 VÌ TỔNG CÁC BÌNH PHƯƠNG LUÔN \(\ge\)
DẤU = XÀY RA KHI a = 1 b = -3 
b)X+Y/Z + Y+Z/X + Z+X/Y 
<=>X+Y/Z +1 + Y+Z/X +1+ Z+X/Y+1 -3 
<=>(X+Y+Z)(1/X+1/Y+1/Z)-3
TA CÓ 1/X +1/Y +1/Z=0 
=> BT =-3 
2A) QUY ĐỒNG CHUYỂN VẾ TA ĐƯỢC (A-B)^2>0 
B) ÁP DỤNG BĐT CÔ SI x+y>= 2.CĂNxy 
A+B>=2.\(\sqrt{ }\) AB 
1/A +1/B>= 2.\(\sqrt{ }\) 1/AB 

5 tháng 7 2016

Ta có : \(a^2-2a+6b+b^2=-10\)

\(\Leftrightarrow a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\left(1\right)\)

Vì : \(\left(a-1\right)^2\ge0;\left(b+3\right)^2\ge0\) với mọi \(a,b\)

Nên để thõa mãn đẳng thức \(\left(1\right)\) thì phải xảy ra đồng thời : \(\left(a-1\right)^2=0\) và \(\left(b+3\right)^2=0\)

\(\Leftrightarrow a-1=0\) và \(b+3=0\) \(\Leftrightarrow a=1\) và \(b=-3\)

Minh chui luon

26 tháng 2 2017

mình cũng thế

16 tháng 4 2017

tfghc

3 tháng 7 2017

\(\frac{2a}{b+c}=\frac{2b}{a+c}=\frac{2c}{a+b}=\frac{2\left(a+b+c\right)}{2\left(a+b+c\right)}\)=1

vậy m=1