1)giải pt \(\sqrt{4-x^2}+\sqrt{1+4x}+\sqrt{x^2+y^2-2y-3}=\sqrt{x^4-16}-y+5\)
2) giả sử x>z ; y>z ; z>0 .cmr \(\sqrt{z\left(x-z\right)}+\sqrt{z\left(y-z\right)}\le\sqrt{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1./ Điều kiện:
2./ Phương trình đã cho trở thành:
\(\sqrt{4-2^2}+\sqrt{1+4\cdot2}+\sqrt{2^2+y^2-2y-3}=\sqrt{2^4-16}-y+5\)
\(\Leftrightarrow3+\sqrt{\left(y-1\right)^2}=-y+5\)
\(\Leftrightarrow\left|y-1\right|=-y+2\)(5)
\(\Leftrightarrow\orbr{\begin{cases}y-1=-y+2\Rightarrow y=\frac{3}{2}\\1-y=-y+2\Rightarrow Loai\end{cases}}\)
3./ Vậy PT có 1 cặp nghiệm duy nhất (x=2; y = 3/2).
ĐKXĐ: \(\left\{{}\begin{matrix}4-x^2\ge0\\x^4-16\ge0\\4x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2\le4\\x^2\ge4\\4x+1\ge0\end{matrix}\right.\) \(\Rightarrow x=2\)
Thay \(x=2\) vào pt ta được:
\(3+\sqrt{y^2-2y+1}=5-y\)
\(\Leftrightarrow\left|y-1\right|=2-y\) (\(y\le2\))
\(\Rightarrow\left[{}\begin{matrix}y-1=2-y\\y-1=y-2\left(vn\right)\end{matrix}\right.\) \(\Rightarrow y=\frac{3}{2}\)
Vậy nghiệm của pt là \(\left(x;y\right)=\left(2;\frac{3}{2}\right)\)
a/ ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)
\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\)
Phương trình trở thành:
\(a=a^2-12\Leftrightarrow a^2-a-12=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)
\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)
\(\Leftrightarrow x^2-16=x^2-16x+64\)
\(\Rightarrow x=5\)
b/ \(x\ge-\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+1}=a\\\sqrt{4x^2-2x+1}=b\end{matrix}\right.\) ta được:
\(a+3b=3+ab\)
\(\Leftrightarrow ab-a-\left(3b-3\right)=0\)
\(\Leftrightarrow a\left(b-1\right)-3\left(b-1\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{4x^2-2x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=9\\4x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Bài 2:
a/ \(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy-5=0\\4xy\left(x+2y\right)+5\left(x+2y\right)-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2y\right)^2-\left(4xy+5\right)=0\\\left(4xy+5\right)\left(x+2y\right)-1=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+2y=a\\4xy+5=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-b=0\\ab=1\end{matrix}\right.\) \(\Rightarrow a^2-\frac{1}{a}=0\Rightarrow a^3-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+2y=1\\4xy+5=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1-2y\\4y\left(1-2y\right)+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-2y\\-8y^2+4y+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=-\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)
b/Cộng vế với vế:
\(17x^2-2\left(4y^2+1\right)x+y^4+1=0\)
\(\Delta'=\left(4y^2+1\right)^2-17\left(y^4+1\right)=-y^4+8y^2-16\)
\(\Delta'=-\left(y^2-4\right)^2\ge0\Rightarrow y^2-4=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
- Với \(y=2\) \(\Rightarrow x^2-2x+1=0\Rightarrow x=1\)
\(\)- Với \(y=-2\Rightarrow x^2-2x-7=0\Rightarrow x=1\pm2\sqrt{2}\)
ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)
pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)
Áp dụng BĐT Cauchy:
\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)
\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)
\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)
\(=4+2+10=16\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
Bài 1)
Ta biết ĐKXĐ:
\(\left\{\begin{matrix}4-x^2\ge0\\x^4-16\ge0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}4-x^2\ge0\\\left(x^2-4\right)\left(x^2+4\right)\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4-x^2\ge0\\x^2-4\ge0\end{matrix}\right.\Rightarrow x^2-4=0\rightarrow x=\pm2\)
Mặt khác \(4x+1\geq 0\Rightarrow x=2\)
Thay vào PT ban đầu : \(\Rightarrow 3+|y-1|=-y+5\Leftrightarrow |y-1|=2-y\)
Xét TH \(y-1\geq 0\) và \(y-1<0\) ta thu được \(y=\frac{3}{2}\)
Thu được cặp nghiệm \((x,y)=\left (2,\frac{3}{2}\right)\)
Bài 2)
BĐT cần chứng minh tương đương với:
\(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\leq 1\Leftrightarrow A=\left(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\right)^2\leq 1\)
Áp dụng BĐT Cauchy - Schwarz kết hợp AM-GM:
\(A\leq \left ( \frac{z}{y}+\frac{z}{x} \right )\left ( \frac{x-z}{x}+\frac{y-z}{y} \right )=\left ( \frac{z}{x}+\frac{z}{y} \right )\left ( 2-\frac{z}{x}-\frac{z}{y} \right )\)
\(\leq \left ( \frac{\frac{z}{x}+\frac{z}{y}+2-\frac{z}{x}-\frac{z}{y}}{2} \right )^2=1\)
Do đó ta có đpcm.