Chứng minh rằng:
7) 5+5^2+5^3+....+5^96 chia hết cho 96
8) 2+2^2+2^3+.....+2^100 chia hết cho 3 vs 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
a) Ta có:
\( A = 5+5^2+5^3+\ldots+5^{100} \)
Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).
Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).
Do đó, A chia hết cho 5.
Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).
Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).
Do đó, A không chia hết cho 25.
b) Ta có:
\( B = 5+5^2+5^3+\ldots+5^{20} \)
Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).
Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).
Do đó, B chia hết cho 6.
c) Ta có:
\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)
Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).
Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).
Do đó, C không chia hết cho 6.
d) Ta có:
\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)
Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).
Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục
mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))
(1+23)+(2+24)+...+(28+211)
9+2(1+23)+...+28(1+23)
9(1+2+...+28) chia hết cho 9
=>( 2^0+2^1+2^2 + ...+2^11) chia hết cho 9
c)(5+52)+(53+54)+...+(599+5100)
5(1+5)+53(1+5)+...+599(1+5)
6(5+53+...+599) chia hết cho 3
a) \(5+5^2+5^3+....+5^{100}\)
đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )
\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+....+5^{99}.6\)
\(A=6\left(5+5^3+....+5^{99}\right)\)
vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)
b) \(2+2^2+2^3+....+2^{100}\)
đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )
\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )
\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(B=2.31+....+2^{96}.31\)
\(B=31\left(2+...+2^{96}\right)\)
vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)
a) 5+5^2+5^3..+5^100
=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)
=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)
=5.6+5^3.6+.....+5^99.6
=6.(5+5^3+.....+5^99):6
a) \(\left(1+2+2^2+...+2^7\right)\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=\left(1+2\right)+2^2.\left(1+2\right)+...+2^6.\left(1+2\right)\)
\(=3+2^2.3+...+2^6.3\)
\(=3.\left(1+2^2+...+2^6\right)⋮3\left(đpcm\right)\)
a) Đặt A = 1 + 2 + 22 + 23 + ... + 27
Ta có:
A = 1 + 2 + 22 + 23 + ... + 27
\(\Rightarrow\)2A = 2 + 22 + 23 + 24 + ... + 28
\(\Rightarrow\)A = 28 - 1 = 255
Vì 255\(⋮\)3\(\Rightarrow\)2 + 22 + 23 + 24 + ... + 28\(⋮\)3
\(\Rightarrow\)ĐPCM
a) Đặt A= \(1+2+2^2+...+2^7=\left(1+2\right)\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=3+2^2\left(1+2\right)+...+2^6\left(1+2\right)\)
\(=3\left(1+2^2+...+2^6\right)\)
Vậy A chia hết ho 3
Câu b,c tương tư
7) Bạn xem lại đề. Phải chia hết cho 26 chứ ???
8) Đặt A = 2 + 22 + 23 + ... + 2100
Nhóm 2 số lại:
A= 2(1+2)+23(1+2)+25(1+2)+...+299(1+2)=2.3+23.3+25.3+...+299.3=3(2+23+25+...+299) chia hết cho 3
Tương tự nhóm 4 số sẽ được A chia hết cho 5.
A chia hết cho 3 và 5 nên A chia hết cho 15
96 mà bn