Một con lắc lò xo dao động điều hòa vs pt: x= 12cos(50t+pi/2)cm . quãng đường vật đi đc trong khoảng thời gian t=pi/12 s kể từ thời điểm t=0:
giúp giải chi tiết cho mk vs!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
Thế năng gấp 3 lần động năng khi:
x = A 3 2 .
Khoảng thời gian ngắn nhất giữa 2 lần khi vật đi quanh biên.
Từ hình vẽ:
1 12 s = T 6 ⇒ T = 0 , 5 s ⇒ ω = 4 π r a d / s .
Ta có:
7 4 s = 3 , 5 T ⇒ S = 14 A ⇒ A = 4 c m .
Vậy x = 4cos(4 π t - π /2) cm.
Ban đầu \(v_0=0\) (cm/s)
Tốc độ của vật tăng thêm \(30\pi\) (cm/s) \(\Rightarrow v_1=30\pi\) (cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian nên ta có thể biểu diễn nó bằng véc tơ quay.
Trong thời gian T/12, góc quay là: \(\alpha=360/12=30^0\)
Ta có:
Ban đầu véc tơ quay ở M ứng với v = 0, lúc sau véc tơ quay đến N.
Ta có: \(30\pi=v_{max}.\sin 30^0\)
\(\Rightarrow v_{max}=60\pi(cm/s)\)
\(\Rightarrow \omega=\dfrac{v_{max}}{A}=5\pi(rad/s)\)
Chu kì: \(T=2\pi/\omega=0,4s\)
Ban đầu vật ở vị trí có pha ban đầu là -pi/3
Sau 13s, vật quét được góc: \(\varphi=\omega t=4\pi.13=52\pi\left(rad\right)\)
Vì góc quay được chia hết cho 2, nghĩa là sau 13s, vật sẽ quay về vị trí ban đầu có pha là -pi/3
\(\Rightarrow S=45cm=3+7.6=\dfrac{A}{2}+7A\)
Vậy vật quay được góc: \(\varphi=\dfrac{\pi}{3}+4\pi-\dfrac{\pi}{2}=\dfrac{23}{6}\pi\left(rad\right)\)
\(\Rightarrow t=\dfrac{\varphi}{\omega}=\dfrac{23\pi}{6.4\pi}=\dfrac{23}{24}\left(s\right)\)
Để tìm tần số dao động của con lắc, ta có công thức:
f = 1/T
Trong đó: f là tần số dao động (Hz) T là chu kì dao động (s)
Theo đề bài, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s là T/3. Độ lớn gia tốc của con lắc được tính bằng công thức:
a = -ω²x
Trong đó: a là gia tốc (cm/s²) ω là góc tốc độ góc của con lắc (rad/s) x là biên độ dao động (cm)
Ta có thể tính được ω bằng công thức:
ω = 2πf
Thay vào công thức gia tốc, ta có:
a = -(2πf)²x = -4π²f²x
Đề bài cho biết gia tốc không vượt quá 100 cm/s, nên ta có:
100 ≥ 4π²f²x
Với x = 5 cm, ta có:
100 ≥ 4π²f²(5)
Simplifying the equation:
5 ≥ π²f²
Từ đó ta có:
f² ≤ 5/π²
f ≤ √(5/π²)
f ≤ √(5/π²) ≈ 0.798 Hz
Vậy tần số dao động của con lắc là khoảng 0.798 Hz.
Trước tiên ta biểu diễn theo phương trình hình tròn :
Với : \(\varphi=-\frac{\pi}{2}\left(rad\right)=90^O\)
Vật xuất phát từ điểm M (vị trí cân bằng theo chiều dương)
\(\Delta t=t_2-t_1=\frac{\pi}{12}\left(s\right)\)
Góc quét : \(\Delta\varphi=\Delta t.\omega=\frac{\pi}{12}.50=\frac{25\pi}{6}\)
Phân tích góc quét : \(\Delta=\frac{25\pi}{6}=\frac{\left(24+1\right)\pi}{6}=2.2\pi+\frac{\pi}{6}\)
Vậy: \(\Delta\varphi_1=2,2\pi\) ; \(\Delta\varphi_2=\frac{\pi}{6}\)
Khi góc quét \(\Delta\varphi_1=2.2\pi\) thì s1 = 2.4.A =2.4.12 = 96 (quay vòng quanh M)
Khi góc quét : \(\Delta\varphi_2=\frac{\pi}{6}\) vật đi từ M đến N thì s2 = 12cos600
Vậy quãng đường tổng cộng : s1 + s2 = 96 + 6 = 102 (cm)
Biểu diễn dao động điều hòa bằng véc tơ quay, trong thời gian \(\pi/12\)s thì véc tơ quay đã quay 1 góc là: \(\alpha=\omega .t =50.\dfrac{\pi}{12}=\dfrac{25\pi}{6}(rad)=4\pi+\dfrac{\pi}{6}\)
+ Véc tơ quay quay đc góc \(4\pi\), bằng 2 chu kì thì quãng đường là: \(S_1=2.4A=8.12=96cm\)
+ Quay thêm góc \(\pi/6\) từ VTCB thì quãng đường đi thêm được là: \(S_2=A/2=6cm\)
Vậy quãng đường vật đi được là: \(S=S_1+S_2=96+6=102cm\)