Cho A= 1 + 3 + 3^2 + 3^3 +...+ 3^11
Chứng minh rằng
a) A chia hết cho 13
b) A chia hết cho 40
làm nhah hộ mk nha các bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 'Gọi ba số đó là n . n + 1 , n + 2
Tổng ba số đó = n + n + 1 + n + 2 = (n + n + n) + (1 + 2) = 3n + 3
Ta có 3n chia hết cho 3 ; 3 chia hết hết cho 3
Vậy.....
b) Gọi 4 số đó là a , a + 1 , a + 2 . a + 3 ,
Tổng ba số đó = a + a + 1 + a + 2 + a + 3 = (a + a + a + a) + (1 + 2 + 3 + 4)
= 4a + 6
Ta có 4a chia hết cho 4
6 không chia hết cho 4
Vậy.....
1 /
a chia hết cho 3 , b cũng vậy .
phân tích ra
các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3 .
bất kì 2 số cùng chia hết cho một số thì tổng cũng chia hết cho nó .
vậy a + b chia hết cho 3 .
ví dụ : a = 15 , b = 12
tổng : 15 + 12 = 27 chia hết cho 3
2 /
a là số chia hết cho 2 , b cũng vậy .
phân tích ra
các số có tận cùng là chẵn thì chia hết cho 2 và chỉ có những số đó mới chia hết cho 2 .
bao nhiêu lần số chia hết cho 2 cũng là số chẵn , mà số chẵn chi hết cho 2
nên a + 3 lần b chia hết cho 2 .
ví dụ : a = 2 , b = 4
tổng : 2 + 4 x 3 = 14 chia hết cho 2
nhé !
Vì số dư khác nhau mà chia cho 3 nên phải là 1 và 2.
Vì số dư là 1 cần cộng thêm 2 mới chia hết cho 3.
Vì số dư là 2 cần cộng thêm 1 mới chia hết cho 3.
Và 2 số đều có số dư là 1,2 nên sẽ chia hết cho 3.
a, vì n^3+3n^2+2^n chia hết cho 6 nên:
n=3+3-2+2 chia hết cho 6
n= 2
b,n= 13-5 = n vậy nên:
suy ra : 5-13= n
vậy n =(-8)
k nha gagagagagaggaga
Lời giải:
a.
$2a+3b\vdots 13$
$\Leftrightarrow 2a+13a+3b\vdots 13$
$\Leftrightarrow 15a+3b\vdots 13$
$\Leftrightarrow 3(5a+b)\vdots 13$
$\Leftrightarrow 5a+b\vdots 13$
b.
$4a+3b\vdots 11$
$\Leftrightarrow 4a-11a+3b\vdots 11$
$\Leftrightarrow -7a+3b\vdots 11$
$\Leftrightarrow -(7a-3b)\vdots 11$
$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với
a) 6\(⋮\)x-1<=>x-1\(\inướccủa6\)
<=> Ư(6)=(1;2;3;6)
x-1=1=>x=2
x-1=2=>x=3
x-1=3=>x=4
x-1=6=>x=7
14\(⋮2x+3\Rightarrow2x+3\inƯ\left(14\right)\)
Ư(14)=(1;2;7;14)
2x+3=1=>x=-1
2x+3=2=>x=-1/2
2x+3=7=>x=2
2x+3=14=>x=11/2
\(A=1+3+3^2+3^3+....+3^{11}\)
\(=\left(1+3+3^2\right)\left(3^3+3^4+3^5\right)+.....+\left(3^9+3^{10}+3^{11}\right)\)
\(=13.1+3^3.13+...+3^9.13\)
\(=13.\left(1+3^3+3^6+3^9\right)\)
Vì có cơ số là 13 => A chia hết cho 13
b) \(A=1+3+3^2+3^3+....+3^{11}\)
\(=40.1+40.3^4+40.3^8\)
\(=40.\left(1+3^4+3^8\right)\)
Vì có cơ số 40 nên A chia hết 40
Ta có
\(\left(+\right)A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+.....+3^9\left(1+3+3^2\right)=13\left(1+3^3+...+3^9\right)\)(chia hết cho 13)
\(\left(+\right)A=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)=40\left(1+3^4+3^8\right)\) chia hết cho 40