1 Cho tam giác ABC . Bx và Cy là các đường thẳng chứa các tia phân giác của các góc ngoài tại B và C . Vẽ AD và AE lần lượt vuông góc với Bx và Cy . Chứng minh rằng : DE song song với BC
2 Cho tam giác ABC . Gọi M , N là trung điểm của AB và BC . Vẽ ME vuông góc với AC , NF vuông góc với AC . Chưng minh rằng :
a) ME song song và bằng NF
b) MN song song và bằng EF
Bài 2:
a: Xét ΔABC có
N là trung điểm của BC
M là trung điểm của AB
Do đó: NM là đường trung bình
=>NM//AC
hay NM//EF
Ta có: ME⊥AC
NF⊥AC
Do đó: ME//NF
Xét tứ giác MEFN có
ME//FN
MN//FE
Do đó: MEFN là hình bình hành
Suy ra: ME=NF
b: Ta có: MEFN là hình bình hành
nên MN=EF