K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=5cm
AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC>DE

8 tháng 5 2016

Thời gian tào hỏa đi là:
           20 - 4 = 16(phút)

Quãng đường AB là:

         120 x 16 = 1920(km)

            Đáp số: 1920 km

29 tháng 3 2018

người ta bảo là ko biết ok

29 tháng 3 2018

thích thì nói thôi ý kiến à

5 tháng 5 2018

xét tam giác adf và tam giác edc ta có

   da=de (giải câu b)

góc fda = góc cde ( 2 góc đối đỉnh)

 góc a= góc e

vậy tam giác adf = tam giác edc(g.c.g)

=>df=dc(2 cạnh tương ứng)(1)

xét tam giác dec vuông tại e ta có

dc>de(dc là cạnh huyền)(2)

từ (1)và (2) =>df=de

a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: DA=DE(hai cạnh tương ứng)

c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(Hai cạnh tương ứng)

mà DC>DE(ΔDEC vuông tại E)

nên DF>DE

28 tháng 6 2021

bạn có thể giúp mình vẽ hình ko

 

12 tháng 5 2021

A B C D E F

a, Xét \(\Delta ABC\) có: 

\(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A  (định lí Pytago đảo)   (đpcm)

b, Ta có: \(\widehat{BAD}=90^o\) (vì \(\Delta ABC\) vuông tại A)

              \(\widehat{BED}=90^o\) (vì \(DE\perp BC\) tại E)

\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)

Xét \(\Delta ABD\) và \(BDE\) có:

\(\widehat{BAD}=\widehat{BED}=90^o\) (chứng minh trên)

BD cạnh chung

\(\widehat{ABD}=\widehat{DBE}\) (vì BD là tia phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta ABD=\Delta EBD\)(cạnh huyền - góc nhọn)

\(\Rightarrow AD=DE\) (2 cạnh tương ứng)   (đpcm)

c, Ta có: \(\widehat{DAF}=90^o\) (vì kề bù với \(\widehat{BAD}=90^o\))

              \(\widehat{CED}=90^o\) (vì \(DE\perp BC\) tại E)

\(\Rightarrow\widehat{DEC}=\widehat{DAF}\)

Xét \(\Delta ADF\) và \(\Delta CDE\) có:

\(\widehat{DEC}=\widehat{DEF}\) (chứng minh trên)

AD = DE (vì \(\Delta ADF=\Delta EDC\))

\(\widehat{ADF}=\widehat{CDE}\) (2 góc đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)   (đpcm)