Cho tam giác ABC vuông tại A, góc B = 20 độ. AH là đường cao của tam giác ABC, vẽ tia phân giác HP của góc AHB. Khi đó góc APH =.....
Đề không có hình nên mong các bạn giúp mình nha.Cảm ơn nhìu lắm!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì AH vuông góc với AH nên góc AHB = 90 độ, và góc ABH + BAH = 90o
=> BAH = 90o - BÂH = 90o - 20o = 70o
Vì HP là p/g của góc AHB nên góc AHP = 1/2 góc AHB = 1/2 .90o = 45o
xét tam giác AHP có góc APH + AHP + PAH = 180o
=> góc APH + 45o + 70o = 180o
=> góc APH = 180o - 45o - 70o = 65o
Vì HD là tia phân giác của ^AHC
=>^AHD=^DHC=90/2=45
Xét ΔHDC có: ^DHC+^HCD+^CDH=180(định lý tổng 3 góc của 1 tam giác)
=>^CDH=180-^HCD-^DHC=180-30-45=105
Có: ^ADH+^CDH=180 (dặp góc kề bù)
=>^ADH=180-^CDH=180-105=75
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AHchung
Do đo: ΔAHB=ΔAHC
b: HB=HC=BC/2=3cm
=>AH=4cm
c: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
Suy ra BM=CN
Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đo: ΔNBC=ΔMCB
Suy ra: góc KBC=góc KCB
=>ΔKBC cân tại K
=>KB=KC
=>KN=KM
hay ΔKNM cân tại K
d: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
*xét tam giác ABC
theo định lý tổng 3 góc của 1 tam giác là 1800
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow90^0+20^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+20^{20}\right)\)
\(\Rightarrow\widehat{C}=180^0-110^0\)
\(\Rightarrow\widehat{C}=70^0\)
* xét tam giác AHC
\(\widehat{AHC}+\widehat{HAC}+\widehat{ACH}=180^0\)
\(\Rightarrow90^0+\widehat{HAC}+70^0=180^0\)
\(\Rightarrow\widehat{HAC}=180^0-\left(70^0+90^0\right)\)
\(=180^0-160^0\)
\(=20^0\left(1\right)\)
Vì HP là phân giác của góc AHB
\(\Rightarrow\widehat{AHP}=\widehat{PHB}=\frac{90^0}{2}=45^0\left(2\right)\)
TỪ (1) VÀ (2):
\(\Rightarrow\widehat{APH}=180^0-\left(20^0+45^0\right)\)
\(=180^0-65^0\)
\(=115^0\)
Câu hỏi của Nguyen Minh Ha - Toán lớp 7 - Học toán với OnlineMath