K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1 2021

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:

\(\dfrac{a^2-b^2}{2}-4b^2+3b=a\Leftrightarrow a^2-9b^2+6b=2a\)

\(\Leftrightarrow\left(a-3b\right)\left(a+3b\right)-2\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+3b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=2-3b\end{matrix}\right.\) \(\Rightarrow...\)

18 tháng 12 2020

Đề bài: Giải hệ phương trình:

\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).

Giải:

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).

\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)

\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).

+) TH1: \(x=y+2\): Thay vào (2) ta được:

\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)

\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)

\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)

\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)

\(\Leftrightarrow16y^4+57y^2=0\)

\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).

+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):

\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).

Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).

Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).

Thử lại không có gt nào thỏa mãn.

Vậy...

 

Đề sai rồi bạn

31 tháng 1 2019

Đáp án: D

28 tháng 3 2020

Cách giải của bạn Lê Nhật Khôi có phần khồn đúng nhưng nó đã gợi cho mình ý tưởng như này

\(HPT\Leftrightarrow\hept{\begin{cases}\left(1-x\right)\left(x^2+y^2+1\right)=y\\2y\left(y+3\right)^2=2-z\\\left(z-2\right)\left(z+1\right)^2=1-x\end{cases}}\)

\(\Rightarrow-2y\left(y+3\right)^2\left(z+1\right)^2\left(x^2+y^2+1\right)=y\Leftrightarrow y\left[2\left(y+3\right)^2\left(z+1\right)^2\left(x^2+y^2+1\right)+1\right]=0\)

\(\Rightarrow y=0\Rightarrow x=1\Rightarrow\orbr{\begin{cases}z=-1\\z=2\end{cases}}\)

26 tháng 3 2020

Vũ Đức Minh ok bạn nhá!!!!:)))

11 tháng 10 2021

a: \(\left\{{}\begin{matrix}x+4y=-11\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=-10\\x+4y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=\dfrac{-11-x}{4}=\dfrac{-11+\dfrac{5}{3}}{4}=-\dfrac{7}{3}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}2x-y=7\\3x+5y=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-3y=21\\6x+15y=-66\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-18y=78\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13}{3}\\x=\dfrac{y+7}{2}=\dfrac{4}{3}\end{matrix}\right.\)

26 tháng 1 2023

ĐKXĐ : \(\left\{{}\begin{matrix}x>-2\\y>-2\end{matrix}\right.\)

Có : x3 + x + 2 = y3 - 3y2 + 4y

<=> x3 + x + 2 = (y3 - 3y2 + 3y - 1) + y + 1

<=> x3 + x + 2 = (y - 1)3 + y + 1 

<=> x3 - (y - 1)3 + x - y + 1 = 0 

<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2]  + (x - y + 1)  = 0

<=>  (x - y + 1)[x2 + x(y - 1) + (y - 1)2 + 1] = 0

<=> x - y + 1 = 0 (Vì  x2 + x(y - 1) + (y - 1)2 + 1 > 0 \(\forall x;y\)  )

<=> y = x + 1

Thay y = x + 1 

\(2\sqrt{x+2}=y+2\)

\(\Leftrightarrow2\sqrt{x+2}=x+3\)

\(\Leftrightarrow x-2\sqrt{x+2}+3=0\)

\(\Leftrightarrow(\sqrt{x+2}-1)^2=0\)

\(\Leftrightarrow\sqrt{x+2}=1\)

\(\Leftrightarrow x=-1\) (tm)

Khi đó y = 0

Vậy (x;y) = (-1;0)