K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Ta có: A < \(\sqrt{2+\sqrt{2+...+\sqrt{3}}}\) < \(\sqrt{3}\)

Lại có: A > \(\sqrt{2}\)

=> \(\sqrt{2}< A< \sqrt{3}\) => A ko phải số tự nhiên

 

7 tháng 8 2016

đang cộng tất cả căn 2 sao tự nhiên lại cộng căn 3 vào làm gì bạn ơi

ta có:

\(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}>\sqrt{1}=1\)

lại có: \(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+2}}=2}\)\(\Rightarrow1< \sqrt{2+\sqrt{2+\sqrt{2+....+\sqrt{2}}}}< 2\)

\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ko phải là STN

26 tháng 2 2022

Nhìn vào bài dễ thấy, \(A>1\)hay ta chứng minh \(A< 2\)

Vậy: \(\sqrt{2+\sqrt{2}}< \sqrt{2+2}=\sqrt{4}=2\)

\(\sqrt{2+\sqrt{2+\sqrt{2}}}< \sqrt{2+2}=\sqrt{4}=2\)

Nên:

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}< \sqrt{2+2}=\sqrt{4}=2\)

\(\Rightarrow1< A< 2\)hay \(A\neℕ\left(đpcm\right)\)

4 tháng 8 2017

Dễ thấy M > 1

Mặt khác  \(M=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{2}}}}< \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{4}}}}\)

Mà  \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{4}}}}=2\)

Suy ra 1<M<2 nên M ko là số tự nhiên.

8 tháng 8 2017

Ta có:

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(>\sqrt{1}=1\)

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(< \sqrt{2+\sqrt{2+\sqrt{2+...\sqrt{4}}}}=2\)

Vậy A không phải số tự nhiên.

Nếu đúng cho nhé.

8 tháng 8 2017

con nay kho the

30 tháng 12 2018

\(A< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}\)

\(=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}=5\)

Vậy A < 5