a) 0,25(x+1/2) + 3/4 + x= 1/2
B) 1/2 ÷(x+7/5)-1/5=0.75
C) 2x^2 + 4x= 0
D) x^2 + 4x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. a) 4x - 3 = 0
⇔ x = \(\dfrac{3}{4}\)
KL.....
b) - x + 2 = 6
⇔ x = - 4
KL...
c) -5 + 4x = 10
⇔ 4x = 15
⇔ x = \(\dfrac{15}{4}\)
KL....
d) 4x - 5 = 6
⇔ 4x = 11
⇔ x = \(\dfrac{11}{4}\)
KL....
h) 1 - 2x = 3
⇔ -2x = 2
⇔ x = -1
KL...
Bài 2. a) ( x - 2)( 4 + 3x ) = 0
⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)
KL......
b) ( 4x - 1)3x = 0
⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)
KL.....
c) ( x - 5)( 1 + 2x) = 0
⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)
KL.....
d) 3x( x + 2) = 0
⇔ x = 0 hoặc x = -2
KL.....
Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0
⇔ x - 10 ≥ 0
⇔ x ≥ 10
b) 3 - 2( 2x + 3) ≤ 9x - 4
⇔ - 4x - 3 ≤ 9x - 4
⇔ 13x ≥1
⇔ x ≥ \(\dfrac{1}{13}\)
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
A. \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+3x+2x+6\right)-\left(x^2+5x-2x-10\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow x^2+3x+2x-x^2-5x+2x=-6-10\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\) .Vậy \(S=\left\{-8\right\}\)
B. \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x+5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x+5x-20\)
\(\Leftrightarrow2x^2-8x+3x+x^2-2x-5x-3x^2+12x-5x=12-10-20\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\) . Vậy \(S=\left\{\dfrac{18}{5}\right\}\)
C. \(\left(8-4x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow8x-4x^2-8x+4x^2+4x-8x=-16+8\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\) . Vậy \(S=\left\{2\right\}\)
D. \(\left(2x-3\right)\left(8x+2\right)=\left(4x+1\right)\left(4x-1\right)-3\)
\(\Leftrightarrow16x^2+4x-24x-6=16x^2+1^2-3\)
\(\Leftrightarrow16x^2+4x-24x-16x^2=6+1-3\)
\(\Leftrightarrow-20x=4\)
\(\Leftrightarrow x=-\dfrac{1}{5}\) . Vậy \(S=\left\{-\dfrac{1}{5}\right\}\)
a)(x+2)(x+3)-(x-2)(x+5)=0
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
<=>2x=-16
<=>x=-8
b)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow5x=22\Leftrightarrow x=\dfrac{22}{5}\)
c)(8-4x)(x+2)+4(x-2)(x+1)=0
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow-4x=-8\Leftrightarrow x=2\)
d)(2x-3)(8x+2)=(4x+1)(4x-1)-3
\(\Leftrightarrow16x^2+4x-24x-6=16x^2-4x+4x-1-3\)
\(\Leftrightarrow-20x=-2\Leftrightarrow x=\dfrac{-1}{10}\)
a) \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(2.\left(2x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow2x+1=0\) vì \(x^2+1>0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\frac{-1}{2}\)
b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\x-5=0\end{cases}}\)hoặc \(5x+1=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7}{2}\\x=5\end{cases}}\) hoặc \(x=\frac{-1}{5}\)
vậy...
làm tiếp
c) \(\left(x^2+4\right)\left(x-2\right)\left(3-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3-2x=0\end{cases}}\) vì \(x^2+4>0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
vậy...
d) \(\left(x-6\right)\left(x+1\right)-2\left(x+1\right)=0\)
\(\left(x-6-2\right)\left(x+1\right)=0\)
\(\left(x-8\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
vậy...
e) \(\left(x-1\right)^2-4=0\)
\(\left(x-1\right)^2-2^2=0\)
\(\left(x-1-2\right)\left(x-1+2\right)=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
vậy...
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) 3x(x - 1) + 2(x - 1) = 0
<=> (3x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Vậy S = {-2/3; 1}
b) x2 - 1 - (x + 5)(2 - x) = 0
<=> x2 - 1 - 2x + x2 - 10 + 5x = 0
<=> 2x2 + 3x - 11 = 0
<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0
<=> (x + 3/4)2 - 97/16 = 0
<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)
Vậy S = {\(\frac{\sqrt{97}-3}{4}\); \(-\frac{\sqrt{97}-3}{4}\)
d) x(2x - 3) - 4x + 6 = 0
<=> x(2x - 3) - 2(2x - 3) = 0
<=> (x - 2)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
Vậy S = {2; 3/2}
e) x3 - 1 = x(x - 1)
<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0
<=> (x - 1)(x2 + x + 1 - x) = 0
<=> (x - 1)(x2 + 1) = 0
<=> x - 1 = 0
<=> x = 1
Vậy S = {1}
f) (2x - 5)2 - x2 - 4x - 4 = 0
<=> (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy S = {7; 1}
h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0
<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0
<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0
<=> (x - 2)(x - 6) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Vậy S = {2; 6}
\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)
\(3x.x-3x+2x-2=0\)
\(2x-2=0\)
\(2x=2\)
\(x=1\)
\(A.\left(2,3x-6,5\right)\left(0,1x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2,3x-6,5=0\\0,1x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2,3x=6,5\\0,1x=-2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6,5}{2,3}\\x=-20\end{cases}}\)
a) \(0,25\left(x+\frac{1}{2}\right)+\frac{3}{4}+x=\frac{1}{2}\)
\(\Leftrightarrow0,25x+\frac{1}{8}+\frac{3}{4}+x=\frac{1}{2}\)
\(\Leftrightarrow1,25x=-\frac{3}{8}\)
\(\Leftrightarrow x=-\frac{3}{10}\)
c) \(2x^2+4x=0\)
\(\Leftrightarrow2x\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\end{array}\right.\)
a) 0,25(x+1/2) + 3/4 + x= 1/2
<=> \(0,25x+\frac{1}{8}+\frac{3}{4}+x=\frac{1}{2}\)
<=> \(\frac{5}{4}x=\frac{1}{2}-\frac{1}{8}-\frac{3}{4}=-\frac{3}{8}\)
<=> x=\(-\frac{3}{10}\)
B) 1/2 ÷(x+7/5)-1/5=0.75
<=> \(\frac{1}{2}:\left(x+\frac{7}{5}\right)-\frac{1}{5}=\frac{3}{4}\)
<=> \(\frac{1}{2x}+\frac{5}{14}-\frac{1}{5}=\frac{3}{4}\)
<=> \(\frac{1}{2x}=\frac{3}{4}+\frac{1}{5}-\frac{5}{14}=\frac{83}{140}\)
<=> x=\(\frac{70}{83}\)
C) 2x^2 + 4x= 0
\(x\left(x+2\right)=0\)
<=> x=0 hoặc x=-2
D) x^2 + 4x = 0<=> x(x+4)=0
<=> x=0 hoặc x=-4